设f(x)在x=0的某一邻域内二阶可导,且lim(x-->0)f(x)/x=0,f''(0)=2.求lim(x-->0)f(x)/x^2
因为f(x)在x=0处二阶可导从而连续且lim(x-->0)f(x)/x=0为什么能得到lim(x-->0)f(x)=f(0)=0.请详细解释,多谢...
因为f(x)在x=0处二阶可导从而连续且lim(x-->0)f(x)/x=0
为什么能得到lim(x-->0)f(x)=f(0)=0.
请详细解释,多谢 展开
为什么能得到lim(x-->0)f(x)=f(0)=0.
请详细解释,多谢 展开
4个回答
展开全部
因f(x)在x=0处二阶可导从而连续
f'(x)=lim(x-->0){[f(x)-f(0)]/x}
=lim(x-->0) {-f(0)/x},
x-->0,f'(x) 有意义(二阶可导从而连续),除非f(0)=0 (分母x趋于0,则分子必趋于0)
lim(x-->0) f(x)/x^2
=lim(x-->0)f'(x)/(2x) (洛毕达法则)
=lim(x-->0)f"(x)/2=2/2=1
f'(x)=lim(x-->0){[f(x)-f(0)]/x}
=lim(x-->0) {-f(0)/x},
x-->0,f'(x) 有意义(二阶可导从而连续),除非f(0)=0 (分母x趋于0,则分子必趋于0)
lim(x-->0) f(x)/x^2
=lim(x-->0)f'(x)/(2x) (洛毕达法则)
=lim(x-->0)f"(x)/2=2/2=1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
lim(x-->0)f(x)/x=0,说明f(x)与x比较是一个高阶无穷小,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
lim(x-->0)f(x)/x=0
分子x趋于0,则分母必趋于0,否则该极限lim(x-->0)f(x)/x!=0
lim(x-->0)f(x)/x=lim(x-->0)[f(x)-f(0)]/(x-0)=f'(0)=0
由泰勒公式f(x)=f(0)+f'(0)x+(1/2)f"(0)x^2+o(x^2)
则lim(x-->0)f(x)/x^2
=lim(x-->0)[f(0)+f'(0)x+(1/2)f"(0)x^2+o(x^2)]/x^2=lim(x-->0)[(1/2)f"(0)x^2+o(x^2)]/x^2=f"(0)/2 =1
分子x趋于0,则分母必趋于0,否则该极限lim(x-->0)f(x)/x!=0
lim(x-->0)f(x)/x=lim(x-->0)[f(x)-f(0)]/(x-0)=f'(0)=0
由泰勒公式f(x)=f(0)+f'(0)x+(1/2)f"(0)x^2+o(x^2)
则lim(x-->0)f(x)/x^2
=lim(x-->0)[f(0)+f'(0)x+(1/2)f"(0)x^2+o(x^2)]/x^2=lim(x-->0)[(1/2)f"(0)x^2+o(x^2)]/x^2=f"(0)/2 =1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为f(x)在x=0处二阶可导从而连续且lim(x-->0)f(x)/x=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询