已知椭圆x^2/25+y^16=1的两个焦点F1.F2,P是椭圆上的一点,若三角形PF1F2的内切圆半径为1,求点P到X轴的距

winelover72
2011-02-23 · TA获得超过4.2万个赞
知道大有可为答主
回答量:5901
采纳率:100%
帮助的人:3904万
展开全部
首先我们把这个三角形单拿出来,设内心为点A,然后三角形面积可以表示为三个三角形AF1F2、AF1P、AF2P面积的和,由于着三个三角形的高相同,都是内切圆半径,所以三角形PF1F2面积即为周长乘以内切圆半径除以2。
又因为PF1+PF2是恒定的,是长轴长,也就是10,因此周长恒定,是16
所以S△PF1F2=16×1÷2=8
P到x轴的距离为d,根据三角形面积公式,底边F1F2=6,那么 6d÷2=8
d=8/3
4fg3g7
2011-02-23 · TA获得超过1151个赞
知道小有建树答主
回答量:790
采纳率:0%
帮助的人:561万
展开全部
S=1/2R(2a+2c)=1/2*1/2*10=5/2
y=h=2S/2c=(2*5/2)/4=5/4
x=根号【9(1-5/16)】=3根号11/4

参考资料: 百度一下

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式