求微分方程的通解。 (1-x^2)y"-xy'=2 要过程。。。。

tetateta
2011-02-24 · TA获得超过3999个赞
知道小有建树答主
回答量:739
采纳率:0%
帮助的人:390万
展开全部
(1-x^2)y''-xy'=2
y''-x/(1-x^2)y'=2/(1-x^2)
令u(x)=e^(∫-x/(1-x^2) dx)
u=e^(ln(x^2-1)/2)=(x^2-1)*sqrt(e)
由于
d(uy')/dx=u'y'+uy''=uy''-u*(x/(1-x^2))y'=2u
uy'=∫2u dx
uy'=sqrt(e)[x^3/3-x]+c
y'=[sqrt(e)[x^3/3-x]+c]/((x^2-1)*sqrt(e))\
整理,求积分得
y=ln[2 (x + Sqrt[-1 + x^2])] (-ln[2 (x + Sqrt[-1 + x^2])] + c1]) +c2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式