1个回答
展开全部
1、设△ABC,BC边上中线为AD=3cm,AC边上中线BE=4cm,AB边上中线CF=5cm,重心G,
延长GD至M,使DM=GD,连结CM,BM,四边形BMCG是平行四边形,
根据重心性质,GD=AD/3=1cm,则GM=2cm,CM=BG=8/3cm,CG=10/3cm,
根据勾股定理逆定理,△GMC是直角三角形,CD^2=DM^2+CM^2,,
CD=√(1+64/9)=√73/3cm,
BC=2CD=2√73/3cm,
同理延长GE至N,使EN=GE,连CN,AN,CE=√(2^2+16/9)= 2√13/3(cm),
AC=2CE=4√13/3(cm),
同理延长GF至P,使FP=FG,则<PBG=90度,BF=PG/2=5/3(cm),
AB=2BF=10/3(cm),
则三角形周长为√73/3+4√13/3+10/3=(10+4√13+√73)/3(cm),
2、S△GMC=GM*CM/2=2*8/3*(1/2)=8/3(cm^2),
S△CDG=4/3(cm^2),
S△ADC=3S△CDG=4cm^2,
S△ABC=2S△ADC=8cm^2.
延长GD至M,使DM=GD,连结CM,BM,四边形BMCG是平行四边形,
根据重心性质,GD=AD/3=1cm,则GM=2cm,CM=BG=8/3cm,CG=10/3cm,
根据勾股定理逆定理,△GMC是直角三角形,CD^2=DM^2+CM^2,,
CD=√(1+64/9)=√73/3cm,
BC=2CD=2√73/3cm,
同理延长GE至N,使EN=GE,连CN,AN,CE=√(2^2+16/9)= 2√13/3(cm),
AC=2CE=4√13/3(cm),
同理延长GF至P,使FP=FG,则<PBG=90度,BF=PG/2=5/3(cm),
AB=2BF=10/3(cm),
则三角形周长为√73/3+4√13/3+10/3=(10+4√13+√73)/3(cm),
2、S△GMC=GM*CM/2=2*8/3*(1/2)=8/3(cm^2),
S△CDG=4/3(cm^2),
S△ADC=3S△CDG=4cm^2,
S△ABC=2S△ADC=8cm^2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询