化简cosψ+cos2ψ+cos3ψ+·······+cosnψ
1个回答
展开全部
要用到积化和差的公式:
式子乘以2sin(Ψ/2)再除以2sin(Ψ/2),
(cosψ+cos2ψ+cos3ψ+.......+cosnψ) *2sin(Ψ/2) / [2sin(Ψ/2)]
然后将2sin(Ψ/2)移入括号里,积化和差,发现很多项都消去了,得出以下:
=[sin(3Ψ/2)-sin(Ψ/2)+sin(5Ψ/2)-sin(3Ψ/2)+…+sin((2n+1)Ψ/2)-sin((2n-1)Ψ/2)]/[2sin(Ψ/2)]
=[-sin(Ψ/2)+sin((2n+1)Ψ/2)]/[2sin(Ψ/2)]
=(-1/2+sin((2n+1)Ψ/2) / [2sin(Ψ/2)]
式子乘以2sin(Ψ/2)再除以2sin(Ψ/2),
(cosψ+cos2ψ+cos3ψ+.......+cosnψ) *2sin(Ψ/2) / [2sin(Ψ/2)]
然后将2sin(Ψ/2)移入括号里,积化和差,发现很多项都消去了,得出以下:
=[sin(3Ψ/2)-sin(Ψ/2)+sin(5Ψ/2)-sin(3Ψ/2)+…+sin((2n+1)Ψ/2)-sin((2n-1)Ψ/2)]/[2sin(Ψ/2)]
=[-sin(Ψ/2)+sin((2n+1)Ψ/2)]/[2sin(Ψ/2)]
=(-1/2+sin((2n+1)Ψ/2) / [2sin(Ψ/2)]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询