1个回答
展开全部
原式=(1-√3i)^15/(-2i)^15+(√3+i)^15/(2i)^10
=[(1-√3i)/(-2i)]^15+(√3+i)^15*2^5/[2^5*2^10*(i)^(8+2)]
=(√3+i)^15/(2)^15+(√3+i)^15*32/[-2^15]
=-31(√3+i)^15/(2)^15
=-31[cosπ/6+isinπ/6)^15
=-31[cos15π/6+isin15π/6)
=-31(cos5π/2+isin5π/2)
=-31(cosπ/2+isinπ/2)
=-31i.
=[(1-√3i)/(-2i)]^15+(√3+i)^15*2^5/[2^5*2^10*(i)^(8+2)]
=(√3+i)^15/(2)^15+(√3+i)^15*32/[-2^15]
=-31(√3+i)^15/(2)^15
=-31[cosπ/6+isinπ/6)^15
=-31[cos15π/6+isin15π/6)
=-31(cos5π/2+isin5π/2)
=-31(cosπ/2+isinπ/2)
=-31i.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |