已知等比数列{an}中,a1+a2+a3=14,a2+a3+a4=28
1个回答
展开全部
a2+a3+a4=q(a1+a2+a3)
q(a1+a2+a3)=28
14q=28
q=2
a1+a2+a3=14
a1+a1q+a1q^2=14
a1+2a1+4a1=14
7a1=14
a1=2
an=a1q^(n-1)
=2*2^(n-1)
=2^n
bn=log2^(4an),
=log2^(4*2^n),
=log2^(2^2*2^n),
=log2^[2^(n+2)]
=n+2
b1=3
bn是以3为首项,公差为2的等差数列
Sn=(b1+bn)*n/2
=(3+n+2)*n/2
=n(n+5)/2
q(a1+a2+a3)=28
14q=28
q=2
a1+a2+a3=14
a1+a1q+a1q^2=14
a1+2a1+4a1=14
7a1=14
a1=2
an=a1q^(n-1)
=2*2^(n-1)
=2^n
bn=log2^(4an),
=log2^(4*2^n),
=log2^(2^2*2^n),
=log2^[2^(n+2)]
=n+2
b1=3
bn是以3为首项,公差为2的等差数列
Sn=(b1+bn)*n/2
=(3+n+2)*n/2
=n(n+5)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询