(x+y)2+(y+x)2
3个回答
展开全部
2(x^3 +y^3 +z^3 )-〔返胡岁x^2 (y +z)+ y^2 (x +z) +z^2 (x +y)〕
=(x^3 +y^3+x^3+z^3+y^3+z^3)-(x^2*y+x^2*z+x*y^2+y^2*z+x*z^2+y*z^2〕
=(x^3+y^3-x^2*y-x*y^2)+(x^3+z^3-x^2*z-x*z^2)+(y^3+z^3-y^2*z-y*z^2)
=(x^2-y^2)(x-y)+(x^2-z^2)(x-z)+(y^2-z^2)(y-z)
=(x+y)(x-y)^2+(x+z)(x-z)^2+(y+z)(y-z)^2
因为x,y,z为正数,即x>0,y>0,z>0,
则x+y>0,x+z>0,y+z>0,
又因为
(x-y)^2>=0,(x-z)^2>=0,(y-z)^2>漏睁=0,
所以做橘
2(x^3 +y^3 +z^3 )-〔x^2 (y +z)+ y^2 (x +z) +z^2 (x +y)〕
=(x+y)(x-y)^2+(x+z)(x-z)^2+(y+z)(y-z)^2
>=0,
从而
2(x^3 +y^3 +z^3 )≥〔x^2 (y +z) y^2 (x +z) z^2 (x +y)〕.
=(x^3 +y^3+x^3+z^3+y^3+z^3)-(x^2*y+x^2*z+x*y^2+y^2*z+x*z^2+y*z^2〕
=(x^3+y^3-x^2*y-x*y^2)+(x^3+z^3-x^2*z-x*z^2)+(y^3+z^3-y^2*z-y*z^2)
=(x^2-y^2)(x-y)+(x^2-z^2)(x-z)+(y^2-z^2)(y-z)
=(x+y)(x-y)^2+(x+z)(x-z)^2+(y+z)(y-z)^2
因为x,y,z为正数,即x>0,y>0,z>0,
则x+y>0,x+z>0,y+z>0,
又因为
(x-y)^2>=0,(x-z)^2>=0,(y-z)^2>漏睁=0,
所以做橘
2(x^3 +y^3 +z^3 )-〔x^2 (y +z)+ y^2 (x +z) +z^2 (x +y)〕
=(x+y)(x-y)^2+(x+z)(x-z)^2+(y+z)(y-z)^2
>=0,
从而
2(x^3 +y^3 +z^3 )≥〔x^2 (y +z) y^2 (x +z) z^2 (x +y)〕.
追问
我不懂~~~~~~~~~~~~~~~~~~~~~~~
无语!!!!!!!!!!
参考资料: 百度一下
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询