已知sin(a+b)=-3/5,cos(a-b)=12/13,且π/2<b<a<3π/4,求sina2a
展开全部
∵π/2<b<a<3π/4
∴0<a-b<π/4,π<a+b<3π/2
∵cos(a-b)=12/13,sin(a+b)=-3/5
∴sin(a-b)=5/13,cos(a+b)=-4/5
sin2a=sin[(a+b)+(a-b)]=sin(a+b)cos(a-b)+cos(a+b)sin(a-b)
=(-3/5)*(12/13)+(-4/5)*(5/13)
=-56/65
cos2a=cos[(a+b)+(a-b)]=cos(a+b)cos(a-b)-sin(a+b)sin(a-b)
=(-4/5)*(12/13)-(-3/5)*(5/13)
=-33/65
∴0<a-b<π/4,π<a+b<3π/2
∵cos(a-b)=12/13,sin(a+b)=-3/5
∴sin(a-b)=5/13,cos(a+b)=-4/5
sin2a=sin[(a+b)+(a-b)]=sin(a+b)cos(a-b)+cos(a+b)sin(a-b)
=(-3/5)*(12/13)+(-4/5)*(5/13)
=-56/65
cos2a=cos[(a+b)+(a-b)]=cos(a+b)cos(a-b)-sin(a+b)sin(a-b)
=(-4/5)*(12/13)-(-3/5)*(5/13)
=-33/65
参考资料: 百度一下
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询