请给我这道等比数列题的详细过程和准确答案
数列{an}中,a1=2,a(n+1)=an+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列。问:求c的值;求{an}的通项公式。...
数列{an}中,a1=2,a(n+1)=an+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列。问:求c的值;求{an}的通项公式。
展开
1个回答
展开全部
1. an=2的n-1次方
sharp 19:34:41
s6=s5+a1*q^5=31+a1*q^5=a1+62,从而a1*(1-q^5)=-31,则s5=a1*(1-q^5)/(1-q)=-31/(1-q)=31,可求得q=2,再由a1*(1-q^5)=-31得a1=1,于是an=2^(n-1)
2. -1,1,-1,1,。。。相邻两项异号,共有100项,正好50对,显然是0
3. s99=a1+a2+a3+a4+a5+a6+...+a97+a98+a99=a3/(q^2)+a3/q+a3+a6/(q^2)+a6/q+a6+...a99/(q^2)+a99/q+a99=a3*(1/(q^2)+1/q+1)+a6*(1/(q^2)+1/q+1)+...+a99*(1/(q^2)+1/q+1)=(1/(q^2)+1/q+1)*(a3+a6+...+a99)=7/4*(a3+a6+...+a9)=77,所以a3+a6+...+a99=44
4.第四个:左边=2n*n/2=n^2,右边=110*[1-1/2+1/2-1/3+...+1/n-1/(n+1)]=110*[1-1/(n+1)]=110*n/(n+1),于是有n*[n^2+n-110]=0,即n*(n-10)*(n+11)=0,取正值得n=10
5. sn=s(n-1)+an=s(n-1)+a1*q^(n-1)=s(n-1)+(1/2)^(n-2),则有s(n-1)=sn-(1/2)^(n-2)
sharp 19:34:41
s6=s5+a1*q^5=31+a1*q^5=a1+62,从而a1*(1-q^5)=-31,则s5=a1*(1-q^5)/(1-q)=-31/(1-q)=31,可求得q=2,再由a1*(1-q^5)=-31得a1=1,于是an=2^(n-1)
2. -1,1,-1,1,。。。相邻两项异号,共有100项,正好50对,显然是0
3. s99=a1+a2+a3+a4+a5+a6+...+a97+a98+a99=a3/(q^2)+a3/q+a3+a6/(q^2)+a6/q+a6+...a99/(q^2)+a99/q+a99=a3*(1/(q^2)+1/q+1)+a6*(1/(q^2)+1/q+1)+...+a99*(1/(q^2)+1/q+1)=(1/(q^2)+1/q+1)*(a3+a6+...+a99)=7/4*(a3+a6+...+a9)=77,所以a3+a6+...+a99=44
4.第四个:左边=2n*n/2=n^2,右边=110*[1-1/2+1/2-1/3+...+1/n-1/(n+1)]=110*[1-1/(n+1)]=110*n/(n+1),于是有n*[n^2+n-110]=0,即n*(n-10)*(n+11)=0,取正值得n=10
5. sn=s(n-1)+an=s(n-1)+a1*q^(n-1)=s(n-1)+(1/2)^(n-2),则有s(n-1)=sn-(1/2)^(n-2)
参考资料: 百度一下
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询