寻matlab大牛指点PCA人脸识别代码运行问题 10

QQ:27811394问题发布:file:///C:/Program%20Files/MATLAB/R2010a/bin/html/FaceRec.html... QQ:27811394
问题发布:
file:///C:/Program%20Files/MATLAB/R2010a/bin/html/FaceRec.html
展开
 我来答
时永昌QL
2011-02-27 · TA获得超过1335个赞
知道小有建树答主
回答量:805
采纳率:0%
帮助的人:568万
展开全部
%更多给我邮件 我的空间有邮件地址

function pca (path, trainList, subDim)
%
% PROTOTYPE
% function pca (path, trainList, subDim)
%
% USAGE EXAMPLE(S)
% pca ('C:/FERET_Normalised/', trainList500Imgs, 200);
%
% GENERAL DESCRIPTION
% Implements the standard Turk-Pentland Eigenfaces method. As a final
% result, this function saves pcaProj matrix to the disk with all images
% projected onto the subDim-dimensional subspace found by PCA.
%
% REFERENCES
% M. Turk, A. Pentland, Eigenfaces for Recognition, Journal of Cognitive
% Neurosicence, Vol. 3, No. 1, 1991, pp. 71-86
%
% M.A. Turk, A.P. Pentland, Face Recognition Using Eigenfaces, Proceedings
% of the IEEE Conference on Computer Vision and Pattern Recognition,
% 3-6 June 1991, Maui, Hawaii, USA, pp. 586-591
%
%
% INPUTS:
% path - full path to the normalised images from FERET database
% trainList - list of images to be used for training. names should be
% without extension and .pgm will be added automatically
% subDim - Numer of dimensions to be retained (the desired subspace
% dimensionality). if this argument is ommited, maximum
% non-zero dimensions will be retained, i.e. (number of training images) - 1
%
% OUTPUTS:
% Function will generate and save to the disk the following outputs:
% DATA - matrix where each column is one image reshaped into a vector
% - this matrix size is (number of pixels) x (number of images), uint8
% imSpace - same as DATA but only images in the training set
% psi - mean face (of training images)
% zeroMeanSpace - mean face subtracted from each row in imSpace
% pcaEigVals - eigenvalues
% w - lower dimensional PCA subspace
% pcaProj - all images projected onto a subDim-dimensional space
%
% NOTES / COMMENTS
% * The following files must either be in the same path as this function
% or somewhere in Matlab's path:
% 1. listAll.mat - containing the list of all 3816 FERET images
%
% ** Each dimension of the resulting subspace is normalised to unit length
%
% *** Developed using Matlab 7
%
%
% REVISION HISTORY
% -
%
% RELATED FUNCTIONS (SEE ALSO)
% createDistMat, feret
%
% ABOUT
% Created: 03 Sep 2005
% Last Update: -
% Revision: 1.0
%
% AUTHOR: Kresimir Delac
% mailto: kdelac@ieee.org
% URL: http://www.vcl.fer.hr/kdelac
%
% WHEN PUBLISHING A PAPER AS A RESULT OF RESEARCH CONDUCTED BY USING THIS CODE
% OR ANY PART OF IT, MAKE A REFERENCE TO THE FOLLOWING PAPER:
% Delac K., Grgic M., Grgic S., Independent Comparative Study of PCA, ICA, and LDA
% on the FERET Data Set, International Journal of Imaging Systems and Technology,
% Vol. 15, Issue 5, 2006, pp. 252-260
%

% If subDim is not given, n - 1 dimensions are
% retained, where n is the number of training images
if nargin < 3
subDim = dim - 1;
end;

disp(' ')

load listAll;

% Constants
numIm = 3816;

% Memory allocation for DATA matrix
fprintf('Creating DATA matrix\n')
tmp = imread ( [path char(listAll(1)) '.pgm'] );
[m, n] = size (tmp); % image size - used later also!!!
DATA = uint8 (zeros(m*n, numIm)); % Memory allocated
clear str tmp;

% Creating DATA matrix
for i = 1 : numIm
im = imread ( [path char(listAll(i)) '.pgm'] );
DATA(:, i) = reshape (im, m*n, 1);
end;
save DATA DATA;
clear im;

% Creating training images space
fprintf('Creating training images space\n')
dim = length (trainList);
imSpace = zeros (m*n, dim);
for i = 1 : dim
index = strmatch (trainList(i), listAll);
imSpace(:, i) = DATA(:, index);
end;
save imSpace imSpace;
clear DATA;

% Calculating mean face from training images
fprintf('Zero mean\n')
psi = mean(double(imSpace'))';
save psi psi;

% Zero mean
zeroMeanSpace = zeros(size(imSpace));
for i = 1 : dim
zeroMeanSpace(:, i) = double(imSpace(:, i)) - psi;
end;
save zeroMeanSpace zeroMeanSpace;
clear imSpace;

% PCA
fprintf('PCA\n')
L = zeroMeanSpace' * zeroMeanSpace; % Turk-Pentland trick (part 1)
[eigVecs, eigVals] = eig(L);

diagonal = diag(eigVals);
[diagonal, index] = sort(diagonal);
index = flipud(index);

pcaEigVals = zeros(size(eigVals));
for i = 1 : size(eigVals, 1)
pcaEigVals(i, i) = eigVals(index(i), index(i));
pcaEigVecs(:, i) = eigVecs(:, index(i));
end;

pcaEigVals = diag(pcaEigVals);
pcaEigVals = pcaEigVals / (dim-1);
pcaEigVals = pcaEigVals(1 : subDim); % Retaining only the largest subDim ones

pcaEigVecs = zeroMeanSpace * pcaEigVecs; % Turk-Pentland trick (part 2)

save pcaEigVals pcaEigVals;

% Normalisation to unit length
fprintf('Normalising\n')
for i = 1 : dim
pcaEigVecs(:, i) = pcaEigVecs(:, i) / norm(pcaEigVecs(:, i));
end;

% Dimensionality reduction.
fprintf('Creating lower dimensional subspace\n')
w = pcaEigVecs(:, 1:subDim);
save w w;
clear w;

% Subtract mean face from all images
load DATA;
load psi;
zeroMeanDATA = zeros(size(DATA));
for i = 1 : size(DATA, 2)
zeroMeanDATA(:, i) = double(DATA(:, i)) - psi;
end;
clear psi;
clear DATA;

% Project all images onto a new lower dimensional subspace (w)
fprintf('Projecting all images onto a new lower dimensional subspace\n')
load w;
pcaProj = w' * zeroMeanDATA;
clear w;
clear zeroMeanDATA;
save pcaProj pcaProj;

参考资料: 百度一下

lyxyjy1314
2011-02-27
知道答主
回答量:5
采纳率:0%
帮助的人:0
展开全部
人脸识别系统你只要以像素点为单位对人脸进行拍摄后像素电匹配达到95%以上就OK了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式