已知函数f(x)=ax-Inx,若f(x)>1在区间(1,正无穷)内恒成立,则实数a的范围为

求过程谢谢... 求过程 谢谢 展开
522597089
2011-02-27 · TA获得超过6787个赞
知道大有可为答主
回答量:1170
采纳率:75%
帮助的人:819万
展开全部
答:a>=1
请看分析:f(x)=ax-lnx,若f(x)=ax-lnx>1,在(1,+oo)上恒成立,
分离常数a即a>(1+lnx)/x在(1,+oo)上恒成立,
该问题等价于a>maxh(x),其中h(x)=(1+lnx)/x,x>1.
补充定义h(1)=1,则易知h(x)在x=1处连续。求导易得h'(x)=-lnx/x^2<0,(x>1),得h(x)在(1,+oo)递减,
于是maxh(x)=(x-->1)limh(x)=h(1)=1,
由于x>1,故h(x)<h(1)=1,此时a须取等号,
故a>maxh(x),得a的取值范围:a>=1。此时命题就恒成立了
(需要细细理解取等号。)
of6tsd2
2011-02-27 · TA获得超过1133个赞
知道小有建树答主
回答量:772
采纳率:0%
帮助的人:560万
展开全部
1、f'(x)=2x+a-1/x<=0,a<=1/x-2x在[1,2]上恒成立,研究不等式右侧函数易知其极小值在x=sqrt(2)/2处取得,所以a<=1/1-2*1=-1
2、g(x)=ax-lnx
(1)若最小值在(0,e]内取得,则g'(x)=a-1/x=0,x=1/a,g(1/a)=1-ln(1/a)=3,a=e^2,x=e^(-2)。验证a=e^2,发现它确实能使x=1/a为最小值,故成立。
(2)若最小值为x=e取得,则ae-1=3,,a=4/e。此时g(x)极小值点为x=e/4<e,不能满足x=e为最小值点。不成立。
综上,a=e^2。
(3)由2知,当a=e^2时g(x)取最小值3,即(e^2)x-lnx>=3,(e^2)x^2-xlnx>=3x,(e^2)x^2-3x>=xlnx(A),对比题中所给式,可知只要研究1/2x和lnx的关系。设u(x)=1/2x-xlnx,求导知x=2为最小值点,u(2)=1-ln2>0。故1/2x>lnx(B)。不等式(A)+(B)即得所证不等式。

参考资料: 百度一下

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式