二叉树是什么

1:请问二叉树是什么啊2:还有二叉树的遍历是什么意思哦比如一个二叉树的后续遍历是dabec中续遍历是debac那么它的前续遍历序列是多少哦?能详细点说明吗快考二级了... 1:请问二叉树是什么啊
2:还有二叉树的遍历是什么意思哦 比如一个二叉树的后续遍历是dabec 中续遍历是debac 那么它的前续遍历序列是多少哦?

能详细点说明吗 快考二级了
展开
 我来答
du...9@163.com
2007-03-27 · TA获得超过842个赞
知道小有建树答主
回答量:346
采纳率:0%
帮助的人:0
展开全部
二叉树 (binary tree) 是另一种树型结构,它的特点是每个结点至多只有二棵子 树 (即二叉树中不存在度大于 2的结点 ),并且,二叉树的子树有左右之分,其次序不能任意颠倒 . 二叉树是一种数据结构 :

Binary_tree=(D,R)

其中: D是具有相同特性的数据元素的集合 ;若 D等于空 ,则 R等于空称为空的二叉树 ;若 D等于空则 R是 D上某个二元关系 H的集合,即 R={H},且
(1) D 中存在唯一的称为根的元素 r,它的关系 H下无前驱 ;
(2) 若 D-{r}不等于空,则 D-{r}={Dl,Dr},且 Dl交 Dr等于空 ;
(3) 若 Dl不等于空 ,则在 Dl中存在唯一的元素 xl,〈 r,xl〉属于 H,且存在 Dl上的关系 Hl属于 H; 若 Dr不等于空 ,则在 Dr中存在唯一的元素 xr,〈 r,xr〉 >属于 H, 且存 Dr上的关 系 Hr属于 H; H={r,xl,< r,xr> ,Hl, Hr};
(4) (Dl, Hl) 是一棵合本定义的二叉树,称为根 r的左子树 ,(Dr,Hr)是一棵符合定义的二叉树,称为根的右子树。

其中,图 6.2 是各种形态的二叉树 .

(1) 为空二叉树 (2)只有一个根结点的二叉树 (3)右子树为空的二叉树 (4)左子树为空的二叉树 (5)完全二叉树

二叉树的基本操作:

(1)INITIATE(BT ) 初始化操作。置 BT为空树。

(2)ROOT(BT)\ROOT(x) 求根函数。求二叉树 BT的根结点或求结点 x所在二叉树的根结点。
若 BT是空树或 x不在任何二叉树上,则函数值为 “空 ”。

(3)PARENT(BT,x) 求双亲函数。求二叉树 BT中结点 x的双亲结点。若结点 x是二叉树 BT 的根结点
或二叉树 BT中无 x结点,则函数值为 “空 ”。

(4)LCHILD(BT,x) 和 RCHILD(BT,x) 求孩子结点函数。分别求二叉树 BT中结点 x的左孩 子和右孩子结点。
若结点 x为叶子结点或不在二叉树 BT中,则函数值为 “空 ”。

(5)LSIBLING(BT,x) 和 RSIBING(BT,x) 求兄弟函数。分别求二叉树 BT中结点 x的左兄弟和右兄弟结点。
若结点 x是根结点或不在 BT中或是其双亲的左 /右子树根 ,则函树值 为 “空 ”。

(6)CRT_BT(x,LBT,RBT) 建树操作。生成一棵以结点 x为根,二叉树 LBT和 RBT分别为左, 右子树的二叉树。

(7)INS_LCHILD(BT,y,x) 和 INS_RCHILD(BT,x) 插入子树操作。将以结点 x为根且右子树为空的二叉树
分别置为二叉树 BT中结点 y的左子树和右子树。若结点 y有左子树 /右子树,则插入后是结点 x的右子树。

(8)DEL_LCHILD(BT,x) 和 DEL-RCHILD(BT,x) 删除子树操作。分别删除二叉树 BT中以结点 x为根的左子树或右子树。
若 x无左子树或右子树,则空操作。

(9)TRAVERSE(BT) 遍历操作。按某个次序依此访问二叉树中各个结点,并使每个结点只被访问一次。

(10)CLEAR(BT) 清除结构操作。将二叉树 BT置为空树。

5.2.2 二叉树的存储结构

一 、顺序存储结构
连续的存储单元存储二叉树的数据元素。例如图 6.4(b)的完全二叉树 , 可以向量 (一维数组 ) bt(1:6)作它的存储结构,将二叉树中编号为 i的结点的数据元素存放在分量 bt[i]中 ,如图 6.6(a) 所示。但这种顺序存储结构仅适合于完全二叉树 ,而一般二叉树也按这种形式来存储 ,这将造成存 贮浪费。如和图 6.4(c)的二叉树相应的存储结构图 6.6(b)所示,图中以 “0”表示不存在此结点 .

二、 链式存储结构
由二叉树的定义得知二叉树的结点由一个数据元素和分别指向左右子树的两个分支构成 ,则表 示二叉树的链表中的结点至少包含三个域 :数据域和左右指针域 ,如图 (b)所示。有时 ,为了便于找 到结点的双亲 ,则还可在结点结构中增加一个指向其双亲受的指针域,如图 6.7(c)所示。

5.3 遍历二叉树

遍历二叉树 (traversing binary tree)的问题, 即如何按某条搜索路径巡访树中每个结点,使得每个结点均被访问一次,而且仅被访问一次。 其中常见的有三种情况:分别称之为先 (根 )序遍历,中 (根 )序遍历和后 (根 )序遍历。

5.3.1 前序遍历

前序遍历运算:即先访问根结点,再前序遍历左子树,最后再前序遍历右子树。前序遍历运算访问二叉树各结点是以根、左、右的顺序进行访问的。例如:

按前序遍历此二叉树的结果为: Hello!How are you?

proc preorder(bt:bitreprtr)
if (bt<>null)[
print(bt^);
preorder(bt^.lchild);
preorder(bt^.rchild);]
end;

5.3.2 中序遍历

中序遍历运算:即先中前序遍历左子树,然后再访问根结点,最后再中序遍历右子树。中序遍历运算访问二叉树各结点是以左、根、右的顺序进行访问的。例如:

按中序遍历此二叉树的结果为: a*b-c

proc inorder(bt:bitreprtr)
if (bt<>null)[
inorder(bt^.lchild);
print(bt^);
niorder(bt^.rchild);]
end;

5.3.3 后序遍历

后序遍历运算:即先后序遍历左子树,然后再后序遍历右子树,最后访问根结点。后序遍历运算访问二叉树各结点是以左、右、根的顺序进行访问的。例如:

按后序遍历此二叉树的结果为: Welecome to use it!

proc postorder(bt:bitreprtr)
if (bt<>null)[
postorder(bt^.lchild);
postorder(bt^.rchild);]
print(bt^);
end;

五、例:
1.用顺序存储方式建立一棵有31个结点的满二叉树,并对其进行先序遍历。
2.用链表存储方式建立一棵如图三、4所示的二叉树,并对其进行先序遍历。
3.给出一组数据:R={10.18,3,8,12,2,7,3},试编程序,先构造一棵二叉树,然后以中序遍历访问所得到的二叉树,并输出遍历结果。
4.给出八枚金币a,b,c,d,e,f,g,h,编程以称最少的次数,判定它们蹭是否有假币,如果有,请找出这枚假币,并判定这枚假币是重了还是轻了。

中山纪念中学三鑫双语学校信息学竞赛组编写 2004.7.15
田友菱yV
2007-03-27 · TA获得超过1686个赞
知道小有建树答主
回答量:742
采纳率:0%
帮助的人:0
展开全部
二叉树
树是一种重要的非线性数据结构,直观地看,它是数据元素(在树中称为结点)按分支关系组织起来的结构,很象自然界中的树那样。树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形象表示。树在计算机领域中也得到广泛应用,如在编译源程序如下时,可用树表示源源程序如下的语法结构。又如在数据库系统中,树型结构也是信息的重要组织形式之一。一切具有层次关系的问题都可用树来描述。
一、树的概述
树结构的特点是:它的每一个结点都可以有不止一个直接后继,除根结点外的所有结点都有且只有一个直接前趋。以下具体地给出树的定义及树的数据结构表示。
(一)树的定义
树是由一个或多个结点组成的有限集合,其中:
⒈必有一个特定的称为根(ROOT)的结点;

⒉剩下的结点被分成n>=0个互不相交的集合T1、T2、......Tn,而且, 这些集合的每一个又都是树。树T1、T2、......Tn被称作根的子树(Subtree)。

树的递归定义如下:(1)至少有一个结点(称为根)(2)其它是互不相交的子树

1.树的度——也即是宽度,简单地说,就是结点的分支数。以组成该树各结点中最大的度作为该树的度,如上图的树,其度为3;树中度为零的结点称为叶结点或终端结点。树中度不为零的结点称为分枝结点或非终端结点。除根结点外的分枝结点统称为内部结点。

2.树的深度——组成该树各结点的最大层次,如上图,其深度为4;

3.森林——指若干棵互不相交的树的集合,如上图,去掉根结点A,其原来的二棵子树T1、T2、T3的集合{T1,T2,T3}就为森林;

4.有序树——指树中同层结点从左到右有次序排列,它们之间的次序不能互换,这样的树称为有序树,否则称为无序树。

5.树的表示

树的表示方法有许多,常用的方法是用括号:先将根结点放入一对圆括号中,然后把它的子树由左至右的顺序放入括号中,而对子树也采用同样的方法处理;同层子树与它的根结点用圆括号括起来,同层子树之间用逗号隔开,最后用闭括号括起来。如上图可写成如下形式:

(A(B(E(K,L),F),C(G),D(H(M),I,J)))

5. 2 二叉树

1.二叉树的基本形态:

二叉树也是递归定义的,其结点有左右子树之分,逻辑上二叉树有五种基本形态:

(1)空二叉树——(a);

(2)只有一个根结点的二叉树——(b);

(3)右子树为空的二叉树——(c);

(4)左子树为空的二叉树——(d);

(5)完全二叉树——(e)

注意:尽管二叉树与树有许多相似之处,但二叉树不是树的特殊情形。

2.两个重要的概念:

(1)完全二叉树——只有最下面的两层结点度小于2,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树;

(2)满二叉树——除了叶结点外每一个结点都有左右子女且叶结点都处在最底层的二叉树,。

3.二叉树的性质

(1) 在二叉树中,第i层的结点总数不超过2^(i-1);

(2) 深度为h的二叉树最多有2h-1个结点(h>=1),最少有h个结点;

(3) 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,

则N0=N2+1;

(4) 具有n个结点的完全二叉树的深度为int(log2n)+1

(5)有N个结点的完全二叉树各结点如果用顺序方式存储,则结点之间有如下关系:

若I为结点编号则 如果I<>1,则其父结点的编号为I/2;

如果2*I<=N,则其左儿子(即左子树的根结点)的编号为2*I;若2*I>N,则无左儿子;

如果2*I+1<=N,则其右儿子的结点编号为2*I+1;若2*I+1>N,则无右儿子。

4.二叉树的存储结构:

(1)顺序存储方式

type node=record

data:datatype

l,r:integer;

end;

var tr:array[1..n] of node;

(2)链表存储方式,如:

type btree=^node;

node=record

data:datatye;

lchild,rchild:btree;

end;

5.普通树转换成二叉树:凡是兄弟就用线连起来,然后去掉父亲到儿子的连线,只留下父母到其第一个子女的连线。
二叉树很象一株倒悬着的树,从树根到大分枝、小分枝、直到叶子把数据联系起来,这种数据结构就叫做树结构,简称树。树中每个分叉点称为结点,起始结点称为树根,任意两个结点间的连接关系称为树枝,结点下面不再有分枝称为树叶。结点的前趋结点称为该结点的"双亲",结点的后趋结点称为该结点的"子女"或"孩子",同一结点的"子女"之间互称"兄弟"。
二、二叉树:二叉树是一种十分重要的树型结构。它的特点是,树中的每个结点最多只有两棵子树,即树中任何结点的度数不得大于2。二叉树的子树有左右之分,而且,子树的左右次序是重要的,即使在只有一棵子树的情况下,也应分清是左子树还是右子树。定义:二叉树是结点的有限集合,这个集合或是空的,或是由一个根结点和两棵互不相交的称之为左子树和右子树的二叉树组成。
(三)完全二叉树
对满二叉树,从第一层的结点(即根)开始,由下而上,由左及右,按顺序结点编号,便得到满二叉树的一个顺序表示。据此编号,完全二叉树定义如下:一棵具有n个结点,深度为K的二叉树,当且仅当所有结点对应于深度为K的满二叉树中编号由1至n的那些结点时,该二叉树便是完全二叉树。图4是一棵完全二叉树。
三、二叉树的遍历
遍历是对树的一种最基本的运算,所谓遍历二叉树,就是按一定的规则和顺序走遍二叉树的所有结点,使每一个结点都被访问一次,而且只被访问一次。由于二叉树是非线性结构,因此,树的遍历实质上是将二叉树的各个结点转换成为一个线性序列来表示。
设L、D、R分别表示遍历左子树、访问根结点和遍历右子树, 则对一棵二叉树的遍历有三种情况:DLR(称为先根次序遍历),LDR(称为中根次序遍历),LRD (称为后根次序遍历)。

(1)先序遍历

访问根;按先序遍历左子树;按先序遍历右子树

(2)中序遍历

按中序遍历左子树;访问根;按中序遍历右子树

(3)后序遍历

按后序遍历左子树;按后序遍历右子树;访问根

参考资料: http://baike.baidu.com/view/88806.html

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友adadc97
2007-03-28 · TA获得超过266个赞
知道答主
回答量:146
采纳率:0%
帮助的人:0
展开全部
在程序里通俗一点就是一个结构体,或一个类,其中有一个前驱指针(或引用),指向他的上一层,其中还有两个指针(或引用),一个为左指针,一个为右指针,分别指向其他对象
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
吾果0j9
高粉答主

2020-04-05 · 关注我不会让你失望
知道答主
回答量:9.3万
采纳率:2%
帮助的人:4676万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式