初中数学题求解

在一元二次方程中,配方法中ax方+bx+c=0这是一个公式么??如果是的话是什么公式?怎么解... 在一元二次方程中,配方法中
ax方+bx+c=0这是一个公式么??如果是的话是什么公式?怎么解
展开
 我来答
享学尘05
2011-02-27 · TA获得超过1848个赞
知道小有建树答主
回答量:209
采纳率:0%
帮助的人:162万
展开全部
ax²+bx+c=0它是一元二次方程的标准形式。

一般解法
1.配方法
(可解全部一元二次方程) 如:解方程:x^2+2x-3=0 解:把常数项移项得:x^2+2x=3 等式两边同时加1(构成完全平方式)得:x^2+2x+1=4 因式分解得:(x+1)^2=4 解得:x1=-3,x2=1 用配方法解一元二次方程小口诀 二次系数化为一 常数要往右边移 一次系数一半方 两边加上最相当
2.公式法
(可解全部一元二次方程) 首先要通过b^2-4ac的值来判断一元二次方程有几个根 1.当b^2-4ac<0时 x无实数根(初中) 2.当b^2-4ac=0时 x有两个相同的实数根 即x1=x2 3.当b^2-4ac>0时 x有两个不相同的实数根 当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a 来求得方程的根
3.因式分解法
(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。 如:解方程:x^2+2x+1=0 解:利用完全平方公式因式分解得:(x+1)^2=0 解得:x1=x2=-1
4.直接开平方法
(可解部分一元二次方程)
5.代数法
(可解全部一元二次方程) ax^2+bx+c=0 同时除以a,可变为x^2+bx/a+c/a=0 设:x=y-b/2 方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错__应为 (y^2+b^2/4-by)除以(by-b^2/2)+c=0 再变成:y^2+(b^22*3)/4+c=0 X ___y^2-b^2/4+c=0 y=±√[(b^2*3)/4+c] X ____y=±√[(b^2)/4+c]
如何选择最简单的解法:
1、看是否可以直接开方解; 2、看是否能用因式分解法解(因式分解的解法中,先考虑提公因式法,再考虑平方公式法,最后考虑十字相乘法); 3、使用公式法求解; 4、最后再考虑配方法(配方法虽然可以解全部一元二次方程,但是有时候解题太麻烦)。
例题精讲:
1、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)^2=n (n≥0)的方程,其解为x=m±√n 例1.解方程(1)(3x+1)^2=7 (2)9x^2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2,右边=11>0,所以此方程也可用直接开平方法解。 (1)解:(3x+1)^2=7 ∴(3x+1)^2=7 ∴3x+1=±√7(注意不要丢解) ∴x= ... ∴原方程的解为x1=...,x2= ... (2)解: 9x^2-24x+16=11 ∴(3x-4)^2=11 ∴3x-4=±√11 ∴x= ... ∴原方程的解为x1=...,x2= ... 2.配方法: 例1 用配方法解方程 3x^2-4x-2=0 解:将常数项移到方程右边 3x^2-4x=2 将二次项系数化为1:x^2-x= 方程两边都加上一次项系数一半的平方:x^2-x+( )^2= +( )^2 配方:(x-)^2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2= . 3.公式法:把一元二次方程化成ax^2+bx+c的一般形式,然后把各项系数a, b, c的值代入求根公式就可得到方程的根。 当b^2-4ac>0时,求根公式为x1=[-b+√(b^2-4ac)]/2a,x2=[-b-√(b^2-4ac)]/2a(两个不相等的实数根) 当b^2-4ac=0时,求根公式为x1=x2=-b/2a(两个相等的实数根) 当b^2-4ac<0时,求根公式为x1=[-b+√(4ac-b^2)i]/2a,x2=[-b-√(4ac-b^2)i]/2a(两个虚数根)(初中理解为无实数根) 例3.用公式法解方程 2x^2-8x=-5 解:将方程化为一般形式:2x^2-8x+5=0 ∴a=2, b=-8, c=5 b^2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x= = = ∴原方程的解为x1=,x2= . 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x^2+3x=0 (3) 6x^2+5x-50=0 (选学) (4)x^2-4x+4=0 (选学) (1)解:(x+3)(x-6)=-8 化简整理得 x^2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。 (2)解:2x^2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x1=0,x2=-3/2是原方程的解。 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。 (3)解:6x2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) ∴2x-5=0或3x+10=0 ∴x1=5/2, x2=-10/3 是原方程的解。 (4)解:x^2-4x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法) (x-2)(x-2 )=0 ∴x1=2 ,x2=2是原方程的解。
小结:
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。 直接开平方法是最基本的方法。 公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。 配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。
(三种重要的数学方法:换元法,配方法,待定系数法)。

我们把△叫做一元二次方程的根的判别式,通常用符号“△”(读delota)
△=√b²-4ac
当△>0时方程有两个根。
当△=0时方程有一个根。
当△<0时方程没有根。
可以结合图像来看。
断秀雷敦
2011-02-27
知道答主
回答量:1
采纳率:0%
帮助的人:0
展开全部
ax方+bx+c=0(a不等于0)是一元二次方程的一般形式。
有求根公式如下:
当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a
当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a(i是虚数单位)(高中才学的)

一元二次方程配方法:
ax^2+bx+c=0(a,b,c是常数)
x^2+bx/a+c/a=0
(x+b/2a)^2=(b^2-4ac)/4a^2
x+b/2a=±(b^2-4ac)^(1/2)/2a
x=[-b±(b^2-4ac)^(1/2)]/2a
追问
知道这一步x^2+bx/a+c/a=0
是不是直接就可以得到(x+b/2a)^2?
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
崇闻柏0EL
2011-02-27 · TA获得超过601个赞
知道小有建树答主
回答量:418
采纳率:0%
帮助的人:228万
展开全部
在一元二次方程中,配方法
ax^2+bx+c=0
∵a≠0
∴两边同除a
x^2+b/ax+c/a=0
(x+b/2a)^2=b^2/4a^2-c/a(通分)=(b^2-4ac)/4a^2
注意 b^2-4ac为判别式△,是判断方程有几个根的。
△>o,有两个不相等的实数根
△=o,有一个根
△<o,无根,方程无解
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式