速求!过程!设函数f(x)=cos²x+asinx-a/4-1/2,(1)当0≤x≤π/2时,用a表示f(x)的最大值M(a)
1个回答
展开全部
(1)f(x)=1-2(sinx)^2 +asinx -(a/4) -(1/2)
=-2(sinx)^2+asinx-(a/4)+(1/2)
=-2[(sinx)- a/4]^2 +(a^2)/8 -(a/4)+(1/2)
当0≤x≤π/2时,0≤sinx≤1
若a/4<0,即a<0时,则M(a)={f(x)}max=f(0)=-(a/4)+(1/2)
若0≤a/4≤1,即0≤a≤4时,则M(a)=f(arcsin(a/4))=(a^2)/8 -(a/4)+(1/2)
若a/4>1,即a>4时,则M(a)=f(π/2)=(3/4)a-(3/2)
综上所述 -0.25a+0.5,a<0
∴ { 0.125(a^2)-0.25a+0.5,0≤a≤4
M(a) =
{ 0.75a-1.5, a>4
(2)若a<0,则M(a)=2解得a=-6,此时{f(x)}min=f(π/2)=(3/4)(-6)-(3/2)=-6
若0≤a≤4,则M(a)=2解得a=1±√13,但1-√13<0,1+√13>4都不满足前提,
故此情况下没有满足要求的a
若a>4,则M(a)=2解得a=14/3,此时{f(x)}min=f(0)=-(14/3/4)+(1/2)=-2/3
∴综上所述M(a)=2时,a有2种可能的取值:
a=-6,对应{f(x)}min=-6
a=14/3,对应{f(x)}min=-2/3
=-2(sinx)^2+asinx-(a/4)+(1/2)
=-2[(sinx)- a/4]^2 +(a^2)/8 -(a/4)+(1/2)
当0≤x≤π/2时,0≤sinx≤1
若a/4<0,即a<0时,则M(a)={f(x)}max=f(0)=-(a/4)+(1/2)
若0≤a/4≤1,即0≤a≤4时,则M(a)=f(arcsin(a/4))=(a^2)/8 -(a/4)+(1/2)
若a/4>1,即a>4时,则M(a)=f(π/2)=(3/4)a-(3/2)
综上所述 -0.25a+0.5,a<0
∴ { 0.125(a^2)-0.25a+0.5,0≤a≤4
M(a) =
{ 0.75a-1.5, a>4
(2)若a<0,则M(a)=2解得a=-6,此时{f(x)}min=f(π/2)=(3/4)(-6)-(3/2)=-6
若0≤a≤4,则M(a)=2解得a=1±√13,但1-√13<0,1+√13>4都不满足前提,
故此情况下没有满足要求的a
若a>4,则M(a)=2解得a=14/3,此时{f(x)}min=f(0)=-(14/3/4)+(1/2)=-2/3
∴综上所述M(a)=2时,a有2种可能的取值:
a=-6,对应{f(x)}min=-6
a=14/3,对应{f(x)}min=-2/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询