已知函数f(x)=lnx-ax+1 (1)求函数f(x)的单调区间
(2)若f(x)≤0恒成立,试确定实数a的取值范围(3)证明:Ln[2·3·4·......·(n+1)]^2≤n(n+1)(n属于年N,n>1)...
(2)若f(x)≤0恒成立,试确定实数a的取值范围
(3)证明:Ln[2·3·4·......·(n+1)]^2≤n(n+1)(n属于年N,n>1) 展开
(3)证明:Ln[2·3·4·......·(n+1)]^2≤n(n+1)(n属于年N,n>1) 展开
展开全部
1)f(x)定义域为(0,+∞)
f'(x)=-a+1/x
①当a≤0时,f'(x)>0恒成立
所以f(x)在(0,+∞)上单调递增
②当a>0时,令f'(x)=0,得x=1/a
当x∈(0,1/a)时,f'(x)>0.f(x)单调递增
当x∈(1,+∞)时,f'(x)<0,f(x)单调递减
综上,当a≤0时,f(x)的单调增区间是(0,+∞)
当a>0时,f(x)的单调增区间是(0,1/a),单调减区间是(1,+∞)
2.f(x)≤0恒成立<=>lnx+1≤ax恒成立<=>a≥(lnx+1)/x恒成立
记g(x)=(lnx+1)/x (x>0)
则g'(x)=-lnx/x²
令g'(x)=0,得x=1
当x∈(0,1)时,g'(x)>0,g(x)单调递增;当x∈(1,+∞)时,g'(x)<0,g(x)单调递减
所以g(x)≤g(1)=1
所以要使a≥(lnx+1)/x恒成立,只需a≥1
即a的范围是[1,+∞)
3.令a=1.由(2)知此时f(x)≤0恒成立.仅当x=1时取等号
当x>1时,有f(x)<0恒成立
即lnx<x-1恒成立
令x=n+1 (n≥1),则ln(n+1)<n恒成立
所以ln2+ln3+…+ln(n+1)<1+2+…+n=n(n+1)/2
<=>2ln[2·3·…·(n+1)]<n(n+1)
即ln[2·3·…·(n+1)]²<n(n+1)
= =应该没有等号吧..你是不是打错题目了
f'(x)=-a+1/x
①当a≤0时,f'(x)>0恒成立
所以f(x)在(0,+∞)上单调递增
②当a>0时,令f'(x)=0,得x=1/a
当x∈(0,1/a)时,f'(x)>0.f(x)单调递增
当x∈(1,+∞)时,f'(x)<0,f(x)单调递减
综上,当a≤0时,f(x)的单调增区间是(0,+∞)
当a>0时,f(x)的单调增区间是(0,1/a),单调减区间是(1,+∞)
2.f(x)≤0恒成立<=>lnx+1≤ax恒成立<=>a≥(lnx+1)/x恒成立
记g(x)=(lnx+1)/x (x>0)
则g'(x)=-lnx/x²
令g'(x)=0,得x=1
当x∈(0,1)时,g'(x)>0,g(x)单调递增;当x∈(1,+∞)时,g'(x)<0,g(x)单调递减
所以g(x)≤g(1)=1
所以要使a≥(lnx+1)/x恒成立,只需a≥1
即a的范围是[1,+∞)
3.令a=1.由(2)知此时f(x)≤0恒成立.仅当x=1时取等号
当x>1时,有f(x)<0恒成立
即lnx<x-1恒成立
令x=n+1 (n≥1),则ln(n+1)<n恒成立
所以ln2+ln3+…+ln(n+1)<1+2+…+n=n(n+1)/2
<=>2ln[2·3·…·(n+1)]<n(n+1)
即ln[2·3·…·(n+1)]²<n(n+1)
= =应该没有等号吧..你是不是打错题目了
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询