帮忙解一道数学概率题。O(∩_∩)O谢谢啦

一袋中装有N-1只黑球和1只白球,每次从袋中随机地摸出一球,并换入一只黑球,这样继续下去,问第k次摸球时,摸到黑球的概率是多少?答案:1-(1-1/N)^(k-1)1/N... 一袋中装有N-1只黑球和1只白球,每次从袋中随机地摸出一球,并换入一只黑球,这样继续下去,问第k次摸球时,摸到黑球的概率是多少?
答案:1-(1-1/N)^(k-1) 1/N (提示:用对立事件求)

书上就是这样写的 希望会的人帮我解答一下 写下思路 谢谢!
展开
百度网友bb355fe
2011-02-28 · TA获得超过188个赞
知道小有建树答主
回答量:159
采纳率:0%
帮助的人:138万
展开全部
你应该这样理解,摸到黑球的对立时间就是摸到白球,P(Black)+P(White)=1
什么情况才能使第K次摸到白球呢, 就是只有在前面k-1次中全部摸到黑球的情况下才有可能发生
即(1-1/N)^(k-1),然后第k次的时候摸到白球即(1-1/N)^(k-1)*(1/N),最后用上面的公式得到1-(1-1/N)^(k-1)*(1/N)即摸到黑球的概率了
韦谷槐9r
2011-02-28 · TA获得超过364个赞
知道小有建树答主
回答量:160
采纳率:0%
帮助的人:97万
展开全部
对立事件可以表达为第k次摸球时,摸到白球的概率,记为P1
则第k次摸球时,摸到白球的概率,即为1-P1
P1可以这样计算:
如果前k-1次摸到过白球,则第k次全是黑球,摸到白球的概率为0
如果前k-1次没摸到过白球,则第k次,袋中仍装有N-1只黑球和1只白球,摸到白球的概率为1/N
所以P1=((N-1)/N)^(k-1)*(1/N)
乘式中第一项为前k-1次没摸到过白球的概率,第二项为第k次摸到白球的概率
所以得到1-P1即为书中答案的形式
不知道我这样讲你明白了没
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
long999jun
2011-02-28 · TA获得超过981个赞
知道小有建树答主
回答量:266
采纳率:0%
帮助的人:290万
展开全部
第K次摸球,不是摸到白球,就是黑球,先算出摸白球的概率,用1去减,就得到黑球的概率了。(这就是用对立事件求了)
要在第K次摸球时,摸到白球,那么前(k-1)次都要摸黑球,不然白球就被换了,没有白球了。
所以前(k-1)次都要摸黑球的概率:(1-1/N)^(k-1)
所以第k次摸白球的概率:(1-1/N)^(k-1) * 1/N
所以第k次摸黑球的概率:1 - (1-1/N)^(k-1) * 1/N
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
枫o0O
2011-02-28
知道答主
回答量:22
采纳率:0%
帮助的人:0
展开全部
直接求摸黑球概率比较困难,因为摸得白球和摸到黑球是对立事件,可以先求地k次摸到白球的概率,1减去摸到白球概率就是第k次摸到黑球的概率
总球数是N-1+1=N,因为在摸球的过程中每次从袋中随机地摸出一球,并换入一只黑球所以袋子中的球至始至终都是N个
第1次摸到白球的概率:1/N
第2次摸到白球的概率:(1-1/N)×1/N(为了保证第2次能摸到白球,那么第一次摸到的必须是黑球)
第3次摸到白球的概率:(1-1/N)×(1-1/N)×1/N
第4次摸到白球的概率:(1-1/N)×(1-1/N)×(1-1/N)×1/N
.....
第K次摸到白球的概率:(1-1/N)^(k-1) 1/N
那么第K次摸到黑球的概率是1-(1-1/N)^(k-1) 1/N
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zhruixss
2011-02-28 · TA获得超过465个赞
知道小有建树答主
回答量:338
采纳率:0%
帮助的人:285万
展开全部
第K次抽到白球的概率是(1-1/N)^(k-1) *1/N
即前K-1次都抽黑球 第K次抽白球(否则一定抽黑球)
所以第K次抽黑球的概率是1-(1-1/N)^(k-1) *1/N
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ethanlgc
2011-02-28
知道答主
回答量:26
采纳率:0%
帮助的人:26.3万
展开全部
1楼回答应该能帮助楼主理解了,我也就不啰嗦了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式