数学中c代表什么
数学中c表示复数集合。在数学计算等场合中经常使用,是作为对文字说明的省略的符号表达。
集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。
扩展资料:
一、其他字母集合
1、N*或N+:正整数集合{1,2,3,…}
2、Z:整数集合{…,-1,0,1,…}
3、Q:有理数集合
4、Q+:正有理数集合
5、Q-:负有理数集合
6、R:实数集合(包括有理数和无理数)
7、R+:正实数集合
8、R-:负实数集合
二、运算定律
交换律:A∩B=B∩A;A∪B=B∪A
结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C
分配对偶律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)
对偶律:(A∪B)^C=A^C∩B^C;(A∩B)^C=A^C∪B^C
同一律:A∪∅=A;A∩U=A
参考资料来源:百度百科-c (数学符号)
参考资料来源:百度百科-集合
C代表复数集合,C代表周长,C代表组合。
我们把集合C={a+bi | a,b∈R}中的数,即形如a+bi(a,b∈R)的数叫做复数.其中i叫做虚数单位,全体复数所成的集合C叫做复数集。
组合,数学的重要概念之一。从n个不同元素中每次取出m个不同元素(0≤m≤n),不管其顺序合成一组,称为从n个元素中不重复地选取m个元素的一个组合。所有这样的组合的总数称为组合数,这个组合数的计算公式为
扩展资料:
复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
复数的四则运算规定为:(a+bi)+(c+di)=(a+c)+(b+d)i,(a+bi)-(c+di)=(a-c)+(b-d)i,(a+bi)·(c+di)=(ac-bd)+(bc+ad)i,(c与d不同时为零)。
排列组合计算方法如下:
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
周长的公式:
1、圆:C=πd=2πr (d为直径,r为半径,π)
2、三角形的周长C = a+b+c(abc为三角形的三条边)
3、四边形:C=a+b+c+d(abcd为四边形的边长)
4、特别的:长方形:C=2(a+b) (a为长,b为宽)
5、正方形:C=4a(a为正方形的边长)
参考资料来源:百度百科-c
参考资料来源:百度百科-组合
N代表自然数集合(包括0),Z代表整数集合,Q代表有理数集合,R代表实数集合,
C还表示周长
S为面积
N代表自然数集合(包括0),Z代表整数集合,Q代表有理数集合,R代表实数集合,
参考资料: 百度一下
N 自然数集
Z 整数集
Q 有理数集
R 实数集
C 复数集
数学首先是一种特殊的语言,严格的数学语言是只有符号而没有文字的,在教科书中经常会介绍一些大家公认的重要符号,这些都是很重要的。