3个回答
2011-03-01 · 知道合伙人教育行家
关注
展开全部
如果题目是【x^4+5x^3+5x^2-5x-6】的话:
x^4+5x^3+5x^2-5x-6
= (x^4-1)+(5x^3-5)+(5x^2-5)-(5x-5)
= (x^2+1)(x+1)(x-1)+5(x-1)(x^2+x+1)+5(x+1)(x-1)-5(x-1)
= (x-1) { (x^2+1)(x+1) + 5(x^2+x+1) + 5(x+1) - 5 }
= (x-1) { x^3+x^2+x+1 + 5x^2+5x+5 + 5x+5 - 5 }
= (x-1) { x^3+6x^2+11x+6 }
= (x-1) { (x^3+6x^2+9x) + (2x+6) }
= (x-1) { x (x+3)^2 + 2(x+3) }
= (x-1) (x+3) { x(x+3) +2 }
= (x-1) (x+3) { x^2+3x +2 }
= (x-1) (x+3) (x+2)(x+1)
x^4+5x^3+5x^2-5x-6
= (x^4-1)+(5x^3-5)+(5x^2-5)-(5x-5)
= (x^2+1)(x+1)(x-1)+5(x-1)(x^2+x+1)+5(x+1)(x-1)-5(x-1)
= (x-1) { (x^2+1)(x+1) + 5(x^2+x+1) + 5(x+1) - 5 }
= (x-1) { x^3+x^2+x+1 + 5x^2+5x+5 + 5x+5 - 5 }
= (x-1) { x^3+6x^2+11x+6 }
= (x-1) { (x^3+6x^2+9x) + (2x+6) }
= (x-1) { x (x+3)^2 + 2(x+3) }
= (x-1) (x+3) { x(x+3) +2 }
= (x-1) (x+3) { x^2+3x +2 }
= (x-1) (x+3) (x+2)(x+1)
追问
问一句,看出来的还是有方法?
追答
做的多了,凭感觉。
像x^4+5x^3+5x^2-5x-6,这种情况,四次项、三次项、二次项、一次项、常数项的系数分别是1,+5,+5,-5,-(5+1),首先联想到的就是因式x-1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
列举几个因式分解中利用到简便方法的例子以及因式分解中巧妙解题的例子~~ 明天搞定~ 1. (a+b)(a-b)^2-(a+b)^3 =(a+b)[(a-b)^2-(a+
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x^4+5x^3+5x^2-5x+6
= (x^4-1)+(5x^3-5)+(5x^2-5)-(5x-5)+12
= (x^2+1)(x+1)(x-1)+5(x-1)(x^2+x+1)+5(x+1)(x-1)-5(x-1)+12
= (x-1) { (x^2+1)(x+1) + 5(x^2+x+1) + 5(x+1) - 5 }+12
= (x-1) { x^3+x^2+x+1 + 5x^2+5x+5 + 5x+5 - 5 }+12
= (x-1) { x^3+6x^2+11x+6 }+12
= (x-1) { (x^3+6x^2+9x) + (2x+6) }+12
= (x-1) { x (x+3)^2 + 2(x+3) }+12
= (x-1) (x+3) { x(x+3) +2 }+12
= (x-1) (x+3) { x^2+3x +2 }+12
= (x-1) (x+3) (x+2)(x+1) +12
= (x^4-1)+(5x^3-5)+(5x^2-5)-(5x-5)+12
= (x^2+1)(x+1)(x-1)+5(x-1)(x^2+x+1)+5(x+1)(x-1)-5(x-1)+12
= (x-1) { (x^2+1)(x+1) + 5(x^2+x+1) + 5(x+1) - 5 }+12
= (x-1) { x^3+x^2+x+1 + 5x^2+5x+5 + 5x+5 - 5 }+12
= (x-1) { x^3+6x^2+11x+6 }+12
= (x-1) { (x^3+6x^2+9x) + (2x+6) }+12
= (x-1) { x (x+3)^2 + 2(x+3) }+12
= (x-1) (x+3) { x(x+3) +2 }+12
= (x-1) (x+3) { x^2+3x +2 }+12
= (x-1) (x+3) (x+2)(x+1) +12
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询