如何进行指纹识别算法的研究? 5
2个回答
展开全部
由于指纹特征的唯一性和稳定性,指纹识别技术很早便应用在刑侦领域,并且已经取得了很大的成功。近年来各种领域身份认证的需求不断增长,并且随着公众的接受和认可,自动指纹识别技术在民用市场逐渐得到了更为广泛的应用。指纹图像的增强和匹配算法是影响自动指纹识别系统精度和速度的重要环节,嵌入式系统由于处理速度和内存的限制对指纹识别算法提出了更高的要求。另外,获取高质量的指纹图像和减少模板存储容量也是嵌入式指纹识别系统特别需要解决的问题。本文针对DSP处理器的技术特点,对嵌入式指纹识兄睁别系统算法中的几个关键问题进行了研究。论文的主要工作和贡献如下: 1) 提出了一种基于运动估计的扫描指纹图像重构算法。我们利用视频压缩和编码技术中的运动估计的理论,并根据手指在采集扫描图像的滑动过程中的物理运动规律,引入预测运动向量的反馈机制,动态地选取参考匹配块,多帧运动估计和亚像素精度的运动估计相结合,得到连续扫描图像的相对位移,重建出指纹图像。根据计算复杂度分析和实验表明我们的算法可以实时地准确地重构出原始指纹图像。 2) 提出了一种基于增强图像的几何特性的二值化方法。我们提出并证明了基于Hessian矩阵的迹的二值化方法等价于最大主曲率的方法,而这个方法的前提条件是指纹图像在局部邻域内具有方向一致性。因此,我们首先利用各向异性扩散滤波器,使扩散滤波的过程在适应局部纹理结构的一致性方向上进行。实验证明该算法的性能优于常用的指纹图像增强和二值化的算法。 3) 提出了一种适用于嵌入式系统的指纹方向图量化压缩的方法,并利用方向图的互信息实现指纹的匹配。根据指纹方向图特征的相关性以及DSP处理器方便的存储位操作,改进行程编码算法,实时高效地实现了量化的方向图的压缩存储。将读让凯取的方向图模板和输入指纹方向图看作两个离散的随机变量,求取方向图的互信息作为两幅图像的相似性度量。方向图互信息匹配的算法能够在识别性能和压缩效率之间获得较好的平衡。 4) 分别在特征层次上和匹配层次上结合细节点三角形特征和方向场特征,并相应地提出了两种不同的匹配算法。在特征层次上结合细节点特征和方向场特征,定义一个旋转和平移羡滑岁不变的固定维数的三角形特征向量,利用非校准的方法进行匹配。针对该算法耗时较长的缺陷,我们提出了分区域查询等价三角形和几何变换参数聚类的方法。在匹配层次上,我们采取了级联的融合策略,以较小的概率启用方向图匹配并融合细节点匹配的结果,得到更高的识别率。 本文的部分研究成果已经转换到基于DSP的指纹识别核心模块中去,在实际应用中取得了良好的识别效果;部分研究成果应用在我们正在开发的生物特征通关安防教育系统上,获得了较好的实验结果。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
看书,上网查资料
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询