线性代数里的秩怎么数?
展开全部
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
计算矩阵的秩的一个有用应用是计算线性方程组解的数目。如果系数矩阵的秩等于增广矩阵的秩,则方程组有解。在这种情况下,如果它的秩等于方程(未知数)的数目,则方程有唯一解;如果秩小于未知数个数,则有无穷多个解。
扩展资料:
矩阵秩的性质:
1、矩阵的行秩,列秩,秩都相等。
2、初等变换不改变矩阵的秩。
3、矩阵的乘积的秩Rab<=min{Ra,Rb};
4、设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。
5、当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。
展开全部
第一步,将矩阵化为行阶梯形。化行阶梯形的步骤是先找出一个最简单的一行,移到第一行,将它依次和下面的行加减。
第二步,从上往下,将不是全为零的行数数出来就是矩阵的秩。
第二步,从上往下,将不是全为零的行数数出来就是矩阵的秩。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询