急!!! 已知公差不为零的等差数列{an}中,a1=1.且a1.a3.a7成等比数列,① 求数列{an}的通项公式。
②、设{an}的前n项和Sn,求数列{Sn/n}的前n项和Tn.请把第二问的过程写的详细清楚些,谢谢。...
②、设{an}的前n项和Sn,求数列{Sn/n}的前n项和Tn.
请把第二问的过程写的详细清楚些,谢谢。 展开
请把第二问的过程写的详细清楚些,谢谢。 展开
2个回答
展开全部
a3² = a1 * a7 = 1 * a7 = a7
即: a3² = a7....(1)
假设等差数列的公差为k,那么:
a3 = a1 + 2k = 1 + 2k ....(2)
a7 = a1 + 6k = 1 + 6k ....(3)
将(2)和(3)代入(1),得到:
(1 + 2k)² = 1+6k
4k² + 4k + 1 = 1 + 6k
4k² - 2k = 0
4k(k-1/2) = 0
所以:k = 0或者k=1/2
因为公差不为0,所以k=1/2,
所以:an = a1 + (n - 1)k = 1 + (n - 1) / 2 = (n + 1) / 2
即:an = (n + 1) / 2
即: a3² = a7....(1)
假设等差数列的公差为k,那么:
a3 = a1 + 2k = 1 + 2k ....(2)
a7 = a1 + 6k = 1 + 6k ....(3)
将(2)和(3)代入(1),得到:
(1 + 2k)² = 1+6k
4k² + 4k + 1 = 1 + 6k
4k² - 2k = 0
4k(k-1/2) = 0
所以:k = 0或者k=1/2
因为公差不为0,所以k=1/2,
所以:an = a1 + (n - 1)k = 1 + (n - 1) / 2 = (n + 1) / 2
即:an = (n + 1) / 2
追问
第二问呢?
追答
② 设{an}的前n项和Sn,求数列{Sn/n}的前n项和Tn
Sn = a1 + a2 + ... + an
= a1 + (a1 + k) + (a1 + 2k) + ... (a1 + (n-1)k)
= na1 + n(n-1)k/2
= n + n(n-1)/4
= n²/4 + 3n/4
令Rn = Sn / n = n/4 + 3/4
Tn = R1 + R2 + R3 + ... + Rn
= (1/4 + 3/4) + (2/4 + 3/4) + ... + (n/4 + 3/4)
= (1+2+ ... + n) / 4 + 3n/4
= n(n+1)/8 + 6n/8
= (n² + 7n) / 8
展开全部
设等差数列公差为d, 则a3=a1+2d,a7=a1+6d. 由题意,a1,a3,a7 成等比数列,所以 a1a7=a3^2, 即 a1(a1+6d)=(a1+2d)^2, 所以 2a1*d=4d^2, 因为d不等于0,两边约去d即知 a1=2d. 又因为a1,a3,a7是等比数列{bn}的连续三项,所以等比数列的公比 q=a3/a1=(a1+2d)/a1=4d/(2d)=2, 即等比数列的公比为2,又b1=1, 所以 b2005=b1*q^2004=2^2004.
参考资料: 百度一下
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询