求2道数学题目解法
1,a,b,c是正整数,满足a^3+b^3+c^2=2010,求恒量a+b.2,正整数m,n满足a+b=m,a^2+b^2=n,a^3+b^3=m+n,求最大n.求解法:...
1,a,b,c是正整数,满足a^3+b^3+c^2=2010,求恒量a+b.
2,正整数m,n满足 a+b=m, a^2+b^2=n, a^3+b^3=m+n ,求最大n.
求解法: 展开
2,正整数m,n满足 a+b=m, a^2+b^2=n, a^3+b^3=m+n ,求最大n.
求解法: 展开
3个回答
展开全部
mn=(a^2+b^2)( a+b)=a^3+b^3+ab(a+b)
a^2+b^2=n=(a+b)^2-2ab=mm-2ab
求出ab=(m^2-n)/2
所以mn=m+n+[(m^2-n)/2]m
求得n=m(m^2+2)/(3m-2)
可以看出(m^2+2)是正整数是肯定的,而把分子分母同时除以m,可以得到分母3-2/m也一定要是正整数。
那么m=1或者2
m=1,n=3;m=2时,n=3;
那么n最大为3.我发现我和自动印象答得一样。
第一题:这个经过思考,只能穷举。
方法是先求c,根号2010=44.8几。c<=44
44,a^3+b^3=74
43,a^3+b^3=161
42,a^3+b^3=246
41,a^3+b^3=329
40,a^3+b^3=410
……
然后a^3+b^3的值为奇数的时候,就从a=1,3,5,7开始代。vice versa.
我暂时是想不到好方法。。。我也用C++编了个程序,C=34,如果考试可以带计算器,我觉得也不是不可以穷举。。。
a^2+b^2=n=(a+b)^2-2ab=mm-2ab
求出ab=(m^2-n)/2
所以mn=m+n+[(m^2-n)/2]m
求得n=m(m^2+2)/(3m-2)
可以看出(m^2+2)是正整数是肯定的,而把分子分母同时除以m,可以得到分母3-2/m也一定要是正整数。
那么m=1或者2
m=1,n=3;m=2时,n=3;
那么n最大为3.我发现我和自动印象答得一样。
第一题:这个经过思考,只能穷举。
方法是先求c,根号2010=44.8几。c<=44
44,a^3+b^3=74
43,a^3+b^3=161
42,a^3+b^3=246
41,a^3+b^3=329
40,a^3+b^3=410
……
然后a^3+b^3的值为奇数的时候,就从a=1,3,5,7开始代。vice versa.
我暂时是想不到好方法。。。我也用C++编了个程序,C=34,如果考试可以带计算器,我觉得也不是不可以穷举。。。
展开全部
1、程序穷举显示,此题只有两组正整数解:
5 9 34 和 9 5 34
2、已知n=(m^3+2m)/(3m-2)
注意到分母:3m-2除以3的余数必然是1,
考虑分子,当m除以3的余数分别为0,1,2时,
容易验证:m^3+2m除以3的余数均为0,
所以,当3m-2>1时,n无整数解
所以,m只能等于1,此时n=3
即,n只能等于3
5 9 34 和 9 5 34
2、已知n=(m^3+2m)/(3m-2)
注意到分母:3m-2除以3的余数必然是1,
考虑分子,当m除以3的余数分别为0,1,2时,
容易验证:m^3+2m除以3的余数均为0,
所以,当3m-2>1时,n无整数解
所以,m只能等于1,此时n=3
即,n只能等于3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询