已知a,b,c,d都是实数,且a2+b2=1,c2+a2=1,求证:丨ac+bd丨≤1

管胖子的文件箱
2011-03-02 · TA获得超过7358个赞
知道大有可为答主
回答量:1182
采纳率:0%
帮助的人:1930万
展开全部
令a=cosα b=sinα 所以a²+b²=1
令c=cosβ b=sinβ ,所以c²+d²=1
丨ac+bd丨=lcosαcosβ+sinαsinβl=lcos(α-β)l
因为预先函数 cos(α-β)∈[-1,1]
所以丨ac+bd丨=lcos(α-β)l∈[0,1]

丨ac+bd丨≤1
匿名用户
2011-03-17
展开全部
a=cosα b=sinα 所以a²+b²=1
令c=cosβ b=sinβ ,所以c²+d²=1
丨ac+bd丨=lcosαcosβ+sinαsinβl=lcos(α-β)l
因为预先函数 cos(α-β)∈[-1,1]
所以丨ac+bd丨=lcos(α-β)l∈[0,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式