简单函数问题

已知函数f(x)=ax^3+bx^2+cx+a^2(a.b.c均属于R)的单调递减区间是(1,2),且满足f(0)=1求f(x)的解析式(为什么a要大于0,讲解下)请详细... 已知函数f(x)=ax^3 +bx^2 +cx +a^2 (a.b.c均属于R)的单调递减区间是(1,2),
且满足f(0)=1

求f(x)的解析式
(为什么a要大于0,讲解下)

请详细些
展开
匿名用户
2011-03-02
展开全部
f'(x)=3ax^2+2bx+c a=1 (1,2)所以f'(x)开口向上,在(1,2),f'(x)<0
--
2022-12-05 广告
图形化编程简单理解为用积木块形式编程,scratch和python也是其中的一种,属于入门级编程,以其简单生动的画面获得无数学生的喜爱,深圳市创客火科技有限公司是一家做教育无人机的公司,旗下有编程无人机,积木无人机及室内外编队,每款飞机含有... 点击进入详情页
本回答由--提供
乐正雯华Dj
2011-03-02 · TA获得超过582个赞
知道小有建树答主
回答量:115
采纳率:0%
帮助的人:146万
展开全部
至于怎么解我想你应该清楚吧,由于(1,2)为单调减区间,即x=1和2为极值点,将x=1和x=2分别代入f'(x)=0,再和f(0)=1三式联立解a,b,c
注意这个区间是单调减区间,所以在x=1.5等处f'(x)小于0,就可检验a的正负了
还有个稍简单的方法,就是x=0处应该处于增区间,所以f'(0)=c大于0,就知道了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式