反比例函数题:已知反比例函数y=k/x与一次函数y=x+b的图像在第一象限相交于点A(1,-k+4)……
(1)试确定两个函数的表达式。(2)求出这两个函数图象的另一个交点B的坐标,并根据图像写出使反比例函数的值大于一次函数的值的x的取值范围。...
(1)试确定两个函数的表达式。
(2)求出这两个函数图象的另一个交点B的坐标,并根据图像写出使反比例函数的值大于一次函数的值的x的取值范围。 展开
(2)求出这两个函数图象的另一个交点B的坐标,并根据图像写出使反比例函数的值大于一次函数的值的x的取值范围。 展开
2个回答
展开全部
解:(1)由直线OA的解析式为y=-1/2x,可以设点A坐标为(x,-1/2x);又OA=根号5,这样就有x²+y²=5,即x²+(-1/2x)²=5,解得x=±2,由图象可知,这里仅取-2,所以点A坐标为(-2,1);
以为点A在y=k/x上,将(-2,1)代入,得k=-2,所以反比例函数为y=-2/x ;
将点B的坐标(1/2,m)代入y=-2/x ,得m=-4,所以点B的坐标(1/2,-4);
由点A坐标(-2,1)与点B坐标(1/2,-4),可求得直线AB方程为y=-2x-3,其实也可以知道:a=-2,b=-3;
所以反比例函数的解析式为y=-2/x,一次函数的解析式为y=-2x-3
(2)因为A、B、C、D四点都在直线AB上,所以三角形ABC的面积为0;
要么你改成“求三角形OAB的面积”,这样的话,先求A、B两点之距为5*根号5/2;再求点O到直线AB的距离为3*根号5/5,所以S△OAB=1/2*(5*根号5/2)*(3*根号5/5)=15/4
以为点A在y=k/x上,将(-2,1)代入,得k=-2,所以反比例函数为y=-2/x ;
将点B的坐标(1/2,m)代入y=-2/x ,得m=-4,所以点B的坐标(1/2,-4);
由点A坐标(-2,1)与点B坐标(1/2,-4),可求得直线AB方程为y=-2x-3,其实也可以知道:a=-2,b=-3;
所以反比例函数的解析式为y=-2/x,一次函数的解析式为y=-2x-3
(2)因为A、B、C、D四点都在直线AB上,所以三角形ABC的面积为0;
要么你改成“求三角形OAB的面积”,这样的话,先求A、B两点之距为5*根号5/2;再求点O到直线AB的距离为3*根号5/5,所以S△OAB=1/2*(5*根号5/2)*(3*根号5/5)=15/4
参考资料: 百度一下
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询