
求微分方程y"+(y'^2)/(1-y)=0的疑问
展开全部
解:设y'=p,则y''=pdp/dy
代入原方程得pdp/dy+p²/(1-y)=0
==>dp/dy=p/(y-1)
==>dp/p=dy/(y-1)
==>ln │p│=ln│y-1│+ln│C1│ (C1是积分常数)
==>p=C1(y-1)
==>y'=C1(y-1)
==>dy/(y-1)=C1dx
==>ln│y-1│=C1x+ln│C2│ (C2是积分常数)
==>y-1=C2e^(C1x)
故原方程的通解是y=1+C2e^(C1x) (C1,C2是积分常数)。
代入原方程得pdp/dy+p²/(1-y)=0
==>dp/dy=p/(y-1)
==>dp/p=dy/(y-1)
==>ln │p│=ln│y-1│+ln│C1│ (C1是积分常数)
==>p=C1(y-1)
==>y'=C1(y-1)
==>dy/(y-1)=C1dx
==>ln│y-1│=C1x+ln│C2│ (C2是积分常数)
==>y-1=C2e^(C1x)
故原方程的通解是y=1+C2e^(C1x) (C1,C2是积分常数)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询