平面几何问题

如图,已知直三棱柱abc-a1b1c1,∠acb=90,e是棱cc1上动点,f是ab中点,ac=bc=2.aa1=4,求证cf⊥平面abb1对不起说错了,这是空间几何的题... 如图,已知直三棱柱abc-a1b1c1,∠acb=90,e是棱cc1上动点,f是ab中点,ac=bc=2.aa1=4,求证cf⊥平面abb1
对不起说错了,这是空间几何的题,有图。是要求用空间几何知识解决。希望能帮忙
展开
 我来答
百度网友a774097ab3c
2011-03-03 · TA获得超过891个赞
知道小有建树答主
回答量:776
采纳率:0%
帮助的人:537万
展开全部
设O坐标为(m,n)则存在一个圆,这个圆以O为圆心,半径为√(m^2+n^2),B在圆上。
圆的方程式可以表示为
(x-m)^2+(y-n)^2=m^2+n^2
将(a,b)代入,有
(a-m)^2+(b-n)^2=m^2+n^2
a^2+b^2=2ma+2bn
m=(a^2+b^2-2bn)/2a ①

在等腰三角形AOB中,∠AOB=α,∠BAO=∠ABO=π/2-α/2,所以有
sinα/√(a^2+b^2)=sin(π/2-α/2)/√(m^2+n^2)
整理得√(m^2+n^2)=√(a^2+b^2)/2sin(α/2) ②
将①代入②,得
(a^2+b^2-2bn)^2/4a^2+n^2=(a^2+b^2)/4sin(α/2)^2
化简得
4n^2-4n+(a^2+b^2)-a^2/sin(α/2)^2=0
解得n=1/2[1±√(1-(a^2+b^2)+a^2/sin(α/2)^2)]
m=【a^2+b^2-b[1±√(1-(a^2+b^2)+a^2/sin(α/2)^2)]】/2a

式中正负号视B所在象限而定,但无论如何,O都有取值。

参考资料: 百度一下

东莞大凡
2024-11-19 广告
板格标定棋盘是我们东莞市大凡光学科技有限公司在精密光学测量领域的重要工具。它采用高精度设计,确保每一个格板都达到严格的校准标准。通过使用板格标定棋盘,我们能够有效地对光学测量系统进行校准,从而提升测量的准确性和可靠性。这一工具在光学仪器的研... 点击进入详情页
本回答由东莞大凡提供
arxhjc
2011-03-03 · TA获得超过558个赞
知道小有建树答主
回答量:305
采纳率:0%
帮助的人:160万
展开全部
这真是立体几何...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式