2cos25°-cos85°/sin25°+根号3cos25°
1个回答
展开全部
令A=√(1+根号3的平方)=2.则:
原式=[2cos(85°-60°)-cos85°]/[A·(sin25°·(1/A) +cos25°·(√3/A) )]
=[2·(cos85°·cos60°+sin85°·sin60°)-cos85°]/[A·(sin25°·(1/A) +cos25°·(√3/A) )]
=(√3/2)·sin85°/[2·(sin25°·(1/2) +cos25°·(√3/2) )]
=(√3/4)·sin85°/(sin25°·cos60° +cos25°·sin60°)
=(√3/4)·(sin85°/sin85°)
=√3/4
原式=[2cos(85°-60°)-cos85°]/[A·(sin25°·(1/A) +cos25°·(√3/A) )]
=[2·(cos85°·cos60°+sin85°·sin60°)-cos85°]/[A·(sin25°·(1/A) +cos25°·(√3/A) )]
=(√3/2)·sin85°/[2·(sin25°·(1/2) +cos25°·(√3/2) )]
=(√3/4)·sin85°/(sin25°·cos60° +cos25°·sin60°)
=(√3/4)·(sin85°/sin85°)
=√3/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询