在传统活性污泥法中解决污泥膨胀的有效方法有哪些?
3个回答
广州诺冠环保
2024-01-17
展开全部
污泥深度脱水处理可以使用多种药剂,普通污泥脱水会使用到以下几种最常见的药剂:
阳离子聚丙烯酰胺:这是一种高分子絮凝剂,可以通过吸附和桥接作用,使污泥中的小颗粒絮凝成较大的颗粒,提高污泥的沉降性能和脱水性能。
聚合氯化铝:这是一种无机高分子混凝剂,可以与污泥中的杂质发生混凝反应,生成不溶性沉淀物,使污泥中的水分被分离出来。
石灰:石灰可以与污泥中的酸性物质发生中和反应,调节污泥的pH值,同时促进污泥的凝聚和沉降。
硅藻土:硅藻土具有多孔性和高比表面积的特点,可以作为助滤剂使用,提高污泥的过滤性能和脱水性能。
需要注意的是,不同种类的药剂适用于不同的污泥性质和处理要求,因此在实际应用中需要根据具体情况选择合适的药剂。有机质比较高的污泥,在工艺不允许添加石灰的情况下,需要定制有机的深度污泥脱水剂,并进行相应的工艺参数调整,保证污泥处理效果。
展开全部
活性污泥法的关键技术是活性污泥沉降性能的好坏,它直接影响了出水水质,而污泥膨胀是恶化处理水质的重要原因。
1 污泥膨胀的概念及测定指标
1.1 污泥膨胀的概念
活性污泥是活性污泥处理系统在运行过程中出现的异常情况之一,其表观现象是活性污泥絮凝体的结构与正常絮凝体相比要松散一些,体积膨胀,含水率上升,不利于污泥底物对污水中营养物质的吸收降解,并且影响后续工序的沉淀效果。
一般从以下三个方面定义污泥膨胀:沉降性能差,区域沉降速度小;污泥松散,不密实,污泥指数较大;由丝状菌引起的污泥膨胀中,丝状菌总长度大于1×104 m/g。
1.2 污泥膨胀的理论
Chudoba在1973年提出了选择性理论,该理论以微生物生长动力学为基础,根据不同种类微生物的最大生长速率μmax及其饱和常数Ks值的不同,分析丝状菌与菌胶团细菌的竞争情况。该理论认为活性污泥中存在A、B两种类型微生物种群,丝状菌属于A型;具有低的 Ks和μmax值,在低基质浓度时具有高的生长速率并占优势;而菌胶团细菌属于B 型,具有较高的Ks和μmax值,在高的基质浓度条件下生长速率大并占优势。1980年Plam又对理论加以扩展,认为该理论对溶解氧也成立,即DO与碳源基质一样,其浓度的高低影响着两种类型细菌的生长速率及其优势地位。
选择性理论能从微生物生长动力学基础上对污泥膨胀现象给予了合理的解释,已被人们广泛接受并成为污泥膨胀研究领域中主要理论。在该理论的指导下,已成功地开发出了选择性反应器工艺来控制污泥膨胀。
1.3 测定指标
污泥沉降比:取活性污泥反应器中的混合液静置30 min后所形成的沉淀污泥的容积占原混合液容积的百分比。正常的活性污泥静置沉淀30 min后,一般可接近其最大密度,反映出二沉池中活性污泥的浓缩情况。
污泥容积指数:曝气池出口处的混合液,在经过30 min静沉后,每克干污泥所形成的沉淀污泥所占有的容积。可表示活性污泥中菌胶团结合水率的高低。
污泥成层沉降速度:混合液静置一段时间后,形成清晰的泥水分界线,此后进入成层沉淀阶段,分界线匀速下降的速度即为污泥成层沉降速度。
丝状菌长度:活性污泥单位体积内丝状菌的长度,该指标用来表示丝状菌含量。
2 污泥膨胀的类型
污泥膨胀分丝状菌膨胀和非丝状菌膨胀两类。其中90%是由丝状菌引起的,只有10%左右是由非丝状菌引起的。活性污泥系统中的生物处于动态平衡之中,理想的絮凝体沉淀性能好,丝状菌和菌胶团细菌之间相互竞争,相互依存,絮体中存在的丝状菌有利于保护絮体已经形成的结构并能增加其强度。但是在污泥膨胀诱因的诱发下,丝状菌在和菌胶团的竞争中占优,大量的丝状菌伸出絮凝体,破坏其稳定性。
可辨识的污泥膨胀絮体有两种类型:第一类是长丝状菌从絮体中伸出,此类丝状菌将各个絮体连接,形成丝状菌和絮体网;第二类具有更开放的结构,细菌沿丝状菌凝聚,形成细长的絮体。
3 污泥膨胀的原因
3.1 丝状菌污泥膨胀的原因
3.1.1 进水水质
(1)原水中营养物质含量不足。活性污泥法处理污(废)水的过程,就是污泥中的微生物种群不断地吸收、利用水中污染物,在自身增殖的同时,将污染物加以降解的过程。随反应的进行需要多种营养物质保证其正常的新陈代谢活动,并维持生物的动态平衡和活动。若微生物的食物不足,会使低营养型微生物丝硫细菌、贝氏硫细菌过度繁殖,在与菌胶团细菌的竞争中占优。
(2)原水中碳水化合物和可溶性物质含量高。丝状菌与其它菌种相比有其自身的一些特点,它对高分子物质的水解能力弱,较难吸收不溶性物质。所以,当废水中含有较多量的可溶性有机物时,有利于底物中丝状菌的繁殖。此外,废水中含过多量的糖类碳水化合物时,诸如球衣菌属的丝状菌能直接将葡萄糖、乳糖等糖类物质作为能源加以吸收利用,同时分泌出高粘性物质覆盖在菌胶团细菌表面,从而大大提高了污泥的水结合率。
(3)硫化物含量高。正常的活性污泥中硫代谢丝状菌含量不多,若污水中硫化物含量偏高(这种情况多存在于工业废水中),容易引起诸如硫化菌、021N型菌、贝氏硫化菌等硫代谢丝状菌的过量增殖,致使引发污泥膨胀。
(4)进水波动。进水波动是指进入活性污泥反应器的原水在流量以及有机物浓度、种类方面的改变。如果曝气池中有机物浓度突然增加,就会因微生物呼吸迅速致使溶解氧含量降低,此时丝状菌在争夺氧中占优,大量繁殖,引起污泥膨胀。
3.1.2 反应器环境
(1)温度。反应器底物中每种细菌都有自己的最适宜生长温度,在最适宜生长温度下,其繁殖旺盛,竞争力强。如果温度较低,污水中微生物代谢速度较慢,会积贮起大量高粘性的多糖类物质,使活性污泥的表面附着水大大增加,SVI值增高,从而可能会引起污泥膨胀。温度对丝状菌的影响也是很普遍的,丝状菌膨胀对温度具有敏感性,在其它条件等同的情况下,10℃时产生严重的污泥膨胀现象;将反应器温度提高到22℃,不再产生污泥膨胀。这也是大多数活性污泥在冬季时会产生污泥膨胀或者污泥膨胀更加严重的原因之一。
(2)溶解氧。溶解氧作为构成活性污泥混合液三要素(气、水、泥)之一,是许多生物降解反应的必要条件。菌胶团细菌和浮游球衣菌等丝状菌对溶解氧需要量差别比较大,菌胶团细菌是好氧菌,而绝大多数丝状菌是适应性强的微好氧菌。因此,若溶解氧含量不足,菌胶团菌的生长受到抑制,而丝状菌仍能正常利用有机物,在竞争中占优。
(3)pH值。pH值较低,会导致丝状真菌的繁殖而引起污泥膨胀。活性污泥微生物最适宜的pH值范围是6.5~8.5;pH值低于6.5时利于真菌生长繁殖;pH值低至4.5时,真菌将完全占优,活性污泥絮体遭到破坏,所处理的水质恶化[9]。
(4)BOD-污泥负荷。BOD污泥负荷是设计活性污泥反应池和控制其运行的重要指标。
3.2 非丝状菌污泥膨胀的原因
对于非丝状菌膨胀的研究较少,一般认为非丝状菌膨胀是由于絮凝体生理活动的异常而发生的。
3.2.1 进水中含有毒物质
由于进水中含有较多的有毒物质,导致细菌中毒不能分泌出足够的粘性物质,难以形成絮体,或即使形成絮体,但结构松散,沉降性能不好。
3.2.2 营养物质缺乏或不平衡
进水中营养物质缺乏或不平衡,除引发丝状菌膨胀外,还会导致非丝状菌污泥膨胀。由于进水中含有大量的溶解性有机物,使污泥负荷太高,而进水中又缺乏足够的 N、P或溶解氧不足,细菌很快把大量有机物吸入体内,又不能及时代谢分解,向外分泌过多的糖类物质,这类物质中所含的羟基具有很强的亲水性,可以使活性污泥结合水率高达400%,呈粘性的凝胶状
4 丝状菌引起污泥膨胀的控制方法
4.1 投加药剂法控制污泥膨胀
污泥膨胀的早期控制方法主要是靠外加药剂(如消毒剂)直接杀死丝状菌或投加无机或有机混凝剂增加污泥絮体的密度来改善污泥絮体的沉降性能。目前此类方法仍运用于某些污水处理厂。
4.1.1 投加氧化剂
(1)投加Cl2或漂白粉。控制污泥膨胀采用的传统氧化剂是Cl2。Jenkins等人的研究表明,具有氧化能力的Cl2、HOCl和次氯酸根渗入细胞后,能破坏菌体内的酶系统,导致细胞死亡。绝大程度上说的丝状菌都可通过加氯气加以控制。一般投加在回流污泥中,加氯点的 Cl2、浓度应控制在小于35 mg/L,加氯量最适宜控制在10~20 mg/L·d,投加量过大反而会杀死菌胶团菌,造成絮体解体。当SVI值逐渐降低、膨胀不断缓解时,应逐渐减少投药量。
(2)投加H2O2。双氧水在控制污泥丝状菌膨胀中的应用也相当广泛。Keller等人的研究发现,控制丝状菌的最少投量是0.1 g/kg·d(H2O2/MLSS)时,将会破坏脱磷作用,投加一段时间后(大概10天)脱磷作用会慢慢恢复。H2O2的毒性对脱氮作用只有少量的影响,在检测中没有发现氨、氮和硝酸盐氮有明显变化。
(3)投加O3。投加臭氧也可以控制丝状菌引起的污泥膨胀,臭氧还能有效地改善硝化作用和提高难降解有机物的去除率,臭氧的投加量在4 g/kg·d(H2O2/MLSS)左右,一般投加在好氧区。
4.1.2 投加凝聚剂
投加合成的有机聚合物、铁盐、铝盐等混凝剂均可以通过其凝聚作用来提高污泥的压密性增加污泥的比重;投加高岭土、碳酸钙、氢氧化钙等也可以通过提高污泥的压密性来改善污泥的沉降性能。实践证明,不设初沉池的污水厂,其SVI值都比较低,所以设有初沉池的污水厂发生污泥膨胀时,将部分污水直接送到曝气池也是一种控制污泥膨胀的方法。
当污泥膨胀发生时,采用上述方法能较快地降低SVI值,但是没有从根本上控制住丝状菌的繁殖。一旦停止加药,污泥膨胀可能又会出现。加药改变了微生物的生长环境,无疑会对污水处理厂的稳定运行产生负面影响,因此只能作为临时应急只用。
4.2 改善环境法控制污泥膨胀
通过对污泥膨胀机理不断深入的研究和对丝状菌作用的进一步了解,对于污泥膨胀的控制方法也随之由简单的投药等方法发展到应用生态学的原理调节处理工艺运行条件及反应器环境条件,通过协调菌胶团菌微生物与丝状菌共生关系,从根本上消除污泥的丝状菌膨胀问题。
4.2.1 增设生物选择器
早在上世纪70年代人们就发现,当曝气池中混合液呈推流状态并形成一个明显的底物浓度梯度时,不易发生污泥膨胀。生物选择器的设计原理就是使曝气池中的生态环境有利于选择性地发展菌胶团细菌,应用生物竞争的机制控制丝状菌的过度增殖,从而控制污泥膨胀。我们可在曝气池之前设一个小池,局部地提高F/M值,或把曝气池前端设置成高负荷接触区,选择性地培养菌胶团细菌,使其成为优势菌种。
选择器可分为好氧、缺氧和厌氧三种类型。好氧选择器的工作原理是利用菌胶团细菌能在高负荷底物浓度中迅速繁殖并贮存这些底物,而此时丝状菌的增长速率并不能明显地提高。高负荷接触之后的曝气反应中,菌胶团细菌利用贮存的底物大量繁殖生长,丝状菌因食物缺乏而使其生长收到抑制。缺氧选择器的工作原理是大部分菌胶团细菌能够利用硝酸盐中的化合态氧作氧源生长繁殖。而丝状菌此功能较弱,所以生长受到抑制。J.Wanner等人通过对厌氧选择器的实验分析证实,菌胶团细菌由于放磷反应而获取的能量得以能在厌氧条件下利用有机物进行繁殖并贮存,后续的曝气反应中基质浓度底,使丝状菌受到抑制,从而阻止了污泥膨胀的发生。
4.2.2 采用SBR工艺
从SBR法的反应阶段其底物浓度的变化可以看出,SBR法不易发生污泥膨胀。如果把普通活性污泥法中混合液的流态用“离散度”表示,那么它在完全混合时为无穷大,在理想推流时为零。SBR法反应阶段的底物浓度变化相当于普通污泥曝气池分格数为无穷多时的情况(因为普通污泥处理法曝气池分格数越多越接近推流式)。这就有利于菌胶团细菌在竞争中处于优势。此外,SBR法的优点还有:进水和反应开始阶段的反应器处于厌氧状态,有利于抑制丝状菌的过量生长; SBR法的污泥龄短,比增值速率较小的丝状菌不能很好地繁殖;可以省去初沉池相对减少废水中溶解性底物的比例,同时增加了总悬浮固体量。由此可见,SBR本身就是一个很好地防止污泥膨胀的选择器。
4.2.3 回流污泥再生法
此法主要应用在脱氮除磷工艺中,将二沉池排出的回流污泥排入一单独设置的曝气池内进行曝气,将微生物体内贮存物质氧化,从而使菌胶团细菌具有最大吸附和贮存能力,使污泥得到充分再生并恢复活性,所以可以在与丝状菌的竞争中获得优势,抑制丝状菌的过量繁殖。
5 非丝状菌引起污泥膨胀的控制方法
非丝状菌膨胀又称高粘度膨胀,在国内的研究报道很少。营养物缺乏是导致污泥膨胀的一个重要因素。高春娣等人的研究表明投加充足的氮源和磷源,并适当提高污泥负荷可以控制污泥膨胀的发生。如果是由痕量金属的缺乏造成的,可以通过补充污水中的痕量金属的量来消除污泥膨胀。此外,投加酶也可以控制污泥膨胀的发生。
6 结语
随着实践的日益深入,人们对污泥膨胀这一问题的研究不断加深,并不断地有新的研究成果发表,但就污泥膨胀的原因这一问题,没有统一绝对的答案。许多研究者通过实验得出的结论不相一致甚至相反。在工程实际中,引发污泥膨胀的诱因不可能是单一的,只有分析其产生的主要原因,才能找到解决问题的关键办法。
1 污泥膨胀的概念及测定指标
1.1 污泥膨胀的概念
活性污泥是活性污泥处理系统在运行过程中出现的异常情况之一,其表观现象是活性污泥絮凝体的结构与正常絮凝体相比要松散一些,体积膨胀,含水率上升,不利于污泥底物对污水中营养物质的吸收降解,并且影响后续工序的沉淀效果。
一般从以下三个方面定义污泥膨胀:沉降性能差,区域沉降速度小;污泥松散,不密实,污泥指数较大;由丝状菌引起的污泥膨胀中,丝状菌总长度大于1×104 m/g。
1.2 污泥膨胀的理论
Chudoba在1973年提出了选择性理论,该理论以微生物生长动力学为基础,根据不同种类微生物的最大生长速率μmax及其饱和常数Ks值的不同,分析丝状菌与菌胶团细菌的竞争情况。该理论认为活性污泥中存在A、B两种类型微生物种群,丝状菌属于A型;具有低的 Ks和μmax值,在低基质浓度时具有高的生长速率并占优势;而菌胶团细菌属于B 型,具有较高的Ks和μmax值,在高的基质浓度条件下生长速率大并占优势。1980年Plam又对理论加以扩展,认为该理论对溶解氧也成立,即DO与碳源基质一样,其浓度的高低影响着两种类型细菌的生长速率及其优势地位。
选择性理论能从微生物生长动力学基础上对污泥膨胀现象给予了合理的解释,已被人们广泛接受并成为污泥膨胀研究领域中主要理论。在该理论的指导下,已成功地开发出了选择性反应器工艺来控制污泥膨胀。
1.3 测定指标
污泥沉降比:取活性污泥反应器中的混合液静置30 min后所形成的沉淀污泥的容积占原混合液容积的百分比。正常的活性污泥静置沉淀30 min后,一般可接近其最大密度,反映出二沉池中活性污泥的浓缩情况。
污泥容积指数:曝气池出口处的混合液,在经过30 min静沉后,每克干污泥所形成的沉淀污泥所占有的容积。可表示活性污泥中菌胶团结合水率的高低。
污泥成层沉降速度:混合液静置一段时间后,形成清晰的泥水分界线,此后进入成层沉淀阶段,分界线匀速下降的速度即为污泥成层沉降速度。
丝状菌长度:活性污泥单位体积内丝状菌的长度,该指标用来表示丝状菌含量。
2 污泥膨胀的类型
污泥膨胀分丝状菌膨胀和非丝状菌膨胀两类。其中90%是由丝状菌引起的,只有10%左右是由非丝状菌引起的。活性污泥系统中的生物处于动态平衡之中,理想的絮凝体沉淀性能好,丝状菌和菌胶团细菌之间相互竞争,相互依存,絮体中存在的丝状菌有利于保护絮体已经形成的结构并能增加其强度。但是在污泥膨胀诱因的诱发下,丝状菌在和菌胶团的竞争中占优,大量的丝状菌伸出絮凝体,破坏其稳定性。
可辨识的污泥膨胀絮体有两种类型:第一类是长丝状菌从絮体中伸出,此类丝状菌将各个絮体连接,形成丝状菌和絮体网;第二类具有更开放的结构,细菌沿丝状菌凝聚,形成细长的絮体。
3 污泥膨胀的原因
3.1 丝状菌污泥膨胀的原因
3.1.1 进水水质
(1)原水中营养物质含量不足。活性污泥法处理污(废)水的过程,就是污泥中的微生物种群不断地吸收、利用水中污染物,在自身增殖的同时,将污染物加以降解的过程。随反应的进行需要多种营养物质保证其正常的新陈代谢活动,并维持生物的动态平衡和活动。若微生物的食物不足,会使低营养型微生物丝硫细菌、贝氏硫细菌过度繁殖,在与菌胶团细菌的竞争中占优。
(2)原水中碳水化合物和可溶性物质含量高。丝状菌与其它菌种相比有其自身的一些特点,它对高分子物质的水解能力弱,较难吸收不溶性物质。所以,当废水中含有较多量的可溶性有机物时,有利于底物中丝状菌的繁殖。此外,废水中含过多量的糖类碳水化合物时,诸如球衣菌属的丝状菌能直接将葡萄糖、乳糖等糖类物质作为能源加以吸收利用,同时分泌出高粘性物质覆盖在菌胶团细菌表面,从而大大提高了污泥的水结合率。
(3)硫化物含量高。正常的活性污泥中硫代谢丝状菌含量不多,若污水中硫化物含量偏高(这种情况多存在于工业废水中),容易引起诸如硫化菌、021N型菌、贝氏硫化菌等硫代谢丝状菌的过量增殖,致使引发污泥膨胀。
(4)进水波动。进水波动是指进入活性污泥反应器的原水在流量以及有机物浓度、种类方面的改变。如果曝气池中有机物浓度突然增加,就会因微生物呼吸迅速致使溶解氧含量降低,此时丝状菌在争夺氧中占优,大量繁殖,引起污泥膨胀。
3.1.2 反应器环境
(1)温度。反应器底物中每种细菌都有自己的最适宜生长温度,在最适宜生长温度下,其繁殖旺盛,竞争力强。如果温度较低,污水中微生物代谢速度较慢,会积贮起大量高粘性的多糖类物质,使活性污泥的表面附着水大大增加,SVI值增高,从而可能会引起污泥膨胀。温度对丝状菌的影响也是很普遍的,丝状菌膨胀对温度具有敏感性,在其它条件等同的情况下,10℃时产生严重的污泥膨胀现象;将反应器温度提高到22℃,不再产生污泥膨胀。这也是大多数活性污泥在冬季时会产生污泥膨胀或者污泥膨胀更加严重的原因之一。
(2)溶解氧。溶解氧作为构成活性污泥混合液三要素(气、水、泥)之一,是许多生物降解反应的必要条件。菌胶团细菌和浮游球衣菌等丝状菌对溶解氧需要量差别比较大,菌胶团细菌是好氧菌,而绝大多数丝状菌是适应性强的微好氧菌。因此,若溶解氧含量不足,菌胶团菌的生长受到抑制,而丝状菌仍能正常利用有机物,在竞争中占优。
(3)pH值。pH值较低,会导致丝状真菌的繁殖而引起污泥膨胀。活性污泥微生物最适宜的pH值范围是6.5~8.5;pH值低于6.5时利于真菌生长繁殖;pH值低至4.5时,真菌将完全占优,活性污泥絮体遭到破坏,所处理的水质恶化[9]。
(4)BOD-污泥负荷。BOD污泥负荷是设计活性污泥反应池和控制其运行的重要指标。
3.2 非丝状菌污泥膨胀的原因
对于非丝状菌膨胀的研究较少,一般认为非丝状菌膨胀是由于絮凝体生理活动的异常而发生的。
3.2.1 进水中含有毒物质
由于进水中含有较多的有毒物质,导致细菌中毒不能分泌出足够的粘性物质,难以形成絮体,或即使形成絮体,但结构松散,沉降性能不好。
3.2.2 营养物质缺乏或不平衡
进水中营养物质缺乏或不平衡,除引发丝状菌膨胀外,还会导致非丝状菌污泥膨胀。由于进水中含有大量的溶解性有机物,使污泥负荷太高,而进水中又缺乏足够的 N、P或溶解氧不足,细菌很快把大量有机物吸入体内,又不能及时代谢分解,向外分泌过多的糖类物质,这类物质中所含的羟基具有很强的亲水性,可以使活性污泥结合水率高达400%,呈粘性的凝胶状
4 丝状菌引起污泥膨胀的控制方法
4.1 投加药剂法控制污泥膨胀
污泥膨胀的早期控制方法主要是靠外加药剂(如消毒剂)直接杀死丝状菌或投加无机或有机混凝剂增加污泥絮体的密度来改善污泥絮体的沉降性能。目前此类方法仍运用于某些污水处理厂。
4.1.1 投加氧化剂
(1)投加Cl2或漂白粉。控制污泥膨胀采用的传统氧化剂是Cl2。Jenkins等人的研究表明,具有氧化能力的Cl2、HOCl和次氯酸根渗入细胞后,能破坏菌体内的酶系统,导致细胞死亡。绝大程度上说的丝状菌都可通过加氯气加以控制。一般投加在回流污泥中,加氯点的 Cl2、浓度应控制在小于35 mg/L,加氯量最适宜控制在10~20 mg/L·d,投加量过大反而会杀死菌胶团菌,造成絮体解体。当SVI值逐渐降低、膨胀不断缓解时,应逐渐减少投药量。
(2)投加H2O2。双氧水在控制污泥丝状菌膨胀中的应用也相当广泛。Keller等人的研究发现,控制丝状菌的最少投量是0.1 g/kg·d(H2O2/MLSS)时,将会破坏脱磷作用,投加一段时间后(大概10天)脱磷作用会慢慢恢复。H2O2的毒性对脱氮作用只有少量的影响,在检测中没有发现氨、氮和硝酸盐氮有明显变化。
(3)投加O3。投加臭氧也可以控制丝状菌引起的污泥膨胀,臭氧还能有效地改善硝化作用和提高难降解有机物的去除率,臭氧的投加量在4 g/kg·d(H2O2/MLSS)左右,一般投加在好氧区。
4.1.2 投加凝聚剂
投加合成的有机聚合物、铁盐、铝盐等混凝剂均可以通过其凝聚作用来提高污泥的压密性增加污泥的比重;投加高岭土、碳酸钙、氢氧化钙等也可以通过提高污泥的压密性来改善污泥的沉降性能。实践证明,不设初沉池的污水厂,其SVI值都比较低,所以设有初沉池的污水厂发生污泥膨胀时,将部分污水直接送到曝气池也是一种控制污泥膨胀的方法。
当污泥膨胀发生时,采用上述方法能较快地降低SVI值,但是没有从根本上控制住丝状菌的繁殖。一旦停止加药,污泥膨胀可能又会出现。加药改变了微生物的生长环境,无疑会对污水处理厂的稳定运行产生负面影响,因此只能作为临时应急只用。
4.2 改善环境法控制污泥膨胀
通过对污泥膨胀机理不断深入的研究和对丝状菌作用的进一步了解,对于污泥膨胀的控制方法也随之由简单的投药等方法发展到应用生态学的原理调节处理工艺运行条件及反应器环境条件,通过协调菌胶团菌微生物与丝状菌共生关系,从根本上消除污泥的丝状菌膨胀问题。
4.2.1 增设生物选择器
早在上世纪70年代人们就发现,当曝气池中混合液呈推流状态并形成一个明显的底物浓度梯度时,不易发生污泥膨胀。生物选择器的设计原理就是使曝气池中的生态环境有利于选择性地发展菌胶团细菌,应用生物竞争的机制控制丝状菌的过度增殖,从而控制污泥膨胀。我们可在曝气池之前设一个小池,局部地提高F/M值,或把曝气池前端设置成高负荷接触区,选择性地培养菌胶团细菌,使其成为优势菌种。
选择器可分为好氧、缺氧和厌氧三种类型。好氧选择器的工作原理是利用菌胶团细菌能在高负荷底物浓度中迅速繁殖并贮存这些底物,而此时丝状菌的增长速率并不能明显地提高。高负荷接触之后的曝气反应中,菌胶团细菌利用贮存的底物大量繁殖生长,丝状菌因食物缺乏而使其生长收到抑制。缺氧选择器的工作原理是大部分菌胶团细菌能够利用硝酸盐中的化合态氧作氧源生长繁殖。而丝状菌此功能较弱,所以生长受到抑制。J.Wanner等人通过对厌氧选择器的实验分析证实,菌胶团细菌由于放磷反应而获取的能量得以能在厌氧条件下利用有机物进行繁殖并贮存,后续的曝气反应中基质浓度底,使丝状菌受到抑制,从而阻止了污泥膨胀的发生。
4.2.2 采用SBR工艺
从SBR法的反应阶段其底物浓度的变化可以看出,SBR法不易发生污泥膨胀。如果把普通活性污泥法中混合液的流态用“离散度”表示,那么它在完全混合时为无穷大,在理想推流时为零。SBR法反应阶段的底物浓度变化相当于普通污泥曝气池分格数为无穷多时的情况(因为普通污泥处理法曝气池分格数越多越接近推流式)。这就有利于菌胶团细菌在竞争中处于优势。此外,SBR法的优点还有:进水和反应开始阶段的反应器处于厌氧状态,有利于抑制丝状菌的过量生长; SBR法的污泥龄短,比增值速率较小的丝状菌不能很好地繁殖;可以省去初沉池相对减少废水中溶解性底物的比例,同时增加了总悬浮固体量。由此可见,SBR本身就是一个很好地防止污泥膨胀的选择器。
4.2.3 回流污泥再生法
此法主要应用在脱氮除磷工艺中,将二沉池排出的回流污泥排入一单独设置的曝气池内进行曝气,将微生物体内贮存物质氧化,从而使菌胶团细菌具有最大吸附和贮存能力,使污泥得到充分再生并恢复活性,所以可以在与丝状菌的竞争中获得优势,抑制丝状菌的过量繁殖。
5 非丝状菌引起污泥膨胀的控制方法
非丝状菌膨胀又称高粘度膨胀,在国内的研究报道很少。营养物缺乏是导致污泥膨胀的一个重要因素。高春娣等人的研究表明投加充足的氮源和磷源,并适当提高污泥负荷可以控制污泥膨胀的发生。如果是由痕量金属的缺乏造成的,可以通过补充污水中的痕量金属的量来消除污泥膨胀。此外,投加酶也可以控制污泥膨胀的发生。
6 结语
随着实践的日益深入,人们对污泥膨胀这一问题的研究不断加深,并不断地有新的研究成果发表,但就污泥膨胀的原因这一问题,没有统一绝对的答案。许多研究者通过实验得出的结论不相一致甚至相反。在工程实际中,引发污泥膨胀的诱因不可能是单一的,只有分析其产生的主要原因,才能找到解决问题的关键办法。
木林森活性炭江苏有限公司
2023-07-20 广告
2023-07-20 广告
污水处理活性炭的特点主要包括以下几点:1. 吸附能力强:活性炭具有高效的吸附能力,能够有效去除污水中的有机物、颜色、臭味和有害气体等成分。2. 适应性强:活性炭能够适应不同的水质、水温及水量,对同一种有机污染物的污水,无论在高浓度还是低浓度...
点击进入详情页
本回答由木林森活性炭江苏有限公司提供
展开全部
污泥膨胀是指活性污泥质量变轻、膨大,沉降性能恶化,主要两种。
①因丝状菌异常增殖而导致的丝状菌性膨胀。
②因黏性物质大量积累而导致的非丝状菌性膨胀。
当出现污泥膨胀时,可考虑采取以下措施。
①杀灭丝状菌,如投加氯、臭氧、过氧化氢等的药剂。
②改善、提高活性污泥的絮凝性,投加絮凝剂如硫酸铝等。
③改善、提高活性污泥的沉降性、密实性,投加黏土、消石灰等。
④加大回流污泥量并在其回流前进行再生性曝气。
⑤使废水经常处于好氧状态,防止厌氧反应的发生,如预曝气。
⑥加强曝气,提高混合液的DO值。
⑦考虑调节水温;水温<15℃时易于发生高黏性膨胀;而丝状菌膨胀多发生在20℃以上。
⑧降低污泥在二沉池中的停留时间。
⑨调整污泥负荷,当超过0.35kgBOD/(kgMLSS•d)时,易于发生丝状菌膨胀。
⑩调整混合液中的营养物质,可以控制高黏性膨胀。
①因丝状菌异常增殖而导致的丝状菌性膨胀。
②因黏性物质大量积累而导致的非丝状菌性膨胀。
当出现污泥膨胀时,可考虑采取以下措施。
①杀灭丝状菌,如投加氯、臭氧、过氧化氢等的药剂。
②改善、提高活性污泥的絮凝性,投加絮凝剂如硫酸铝等。
③改善、提高活性污泥的沉降性、密实性,投加黏土、消石灰等。
④加大回流污泥量并在其回流前进行再生性曝气。
⑤使废水经常处于好氧状态,防止厌氧反应的发生,如预曝气。
⑥加强曝气,提高混合液的DO值。
⑦考虑调节水温;水温<15℃时易于发生高黏性膨胀;而丝状菌膨胀多发生在20℃以上。
⑧降低污泥在二沉池中的停留时间。
⑨调整污泥负荷,当超过0.35kgBOD/(kgMLSS•d)时,易于发生丝状菌膨胀。
⑩调整混合液中的营养物质,可以控制高黏性膨胀。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
我在实际生产中遇到过因为丝状菌膨胀的情况,和你分享一下经验希望对你有帮助:
丝状菌滋生,一般是因为温度、营养比例、曝气等常规指标出问题了。如果出现了污泥膨胀,工程上面很难调回来,只能一步一步慢慢置换。通过严格控制好各项指标,慢慢排泥,增长新泥。慢慢置换过来。工程量大,效果不明显。
首先控制好水温不能超过30度,太高极易发生膨胀。调整好CNP的比例,一般好氧池在(300~500):5:1。曝气,控制DO在2~4之间,过低微生物竞争不过丝状菌,过高则有机含量不够,微生物处于内消耗。 坚持每天做镜检,可以投加粘土,提高絮凝型增加微量元素,但是别将杂物带入。实在丝状菌多的厉害,投加一点硫酸亚铁,控制在5mg/L以下。慢慢置换吧,一旦膨胀了,只能慢慢来。控制好各项指标,一定可以转换的。
丝状菌滋生,一般是因为温度、营养比例、曝气等常规指标出问题了。如果出现了污泥膨胀,工程上面很难调回来,只能一步一步慢慢置换。通过严格控制好各项指标,慢慢排泥,增长新泥。慢慢置换过来。工程量大,效果不明显。
首先控制好水温不能超过30度,太高极易发生膨胀。调整好CNP的比例,一般好氧池在(300~500):5:1。曝气,控制DO在2~4之间,过低微生物竞争不过丝状菌,过高则有机含量不够,微生物处于内消耗。 坚持每天做镜检,可以投加粘土,提高絮凝型增加微量元素,但是别将杂物带入。实在丝状菌多的厉害,投加一点硫酸亚铁,控制在5mg/L以下。慢慢置换吧,一旦膨胀了,只能慢慢来。控制好各项指标,一定可以转换的。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询