在三角形ABC中.三内角A,B,C,所对的边分别为a,b,c,若满足a=(√3-1)才,tanB/tanc=2a-c/c,求A,B,C的值

厚湛蓝00D
2011-03-13
知道答主
回答量:10
采纳率:0%
帮助的人:0
展开全部
由正弦定理
a/c=sinA/sinC=√3-1

(2a-c)/c=2a/c-c/c=2sinA/sinC-1
所以tanB/tanC=(sinB/cosB)/(sinC/cosC)=sinBcosC/sinCcosB=2sinA/sinC-1
(sinBcosC+sinCcosB)/sinCcosB=2sinA/sinC
sin(B+C)/sinCcosB=2sinA/sinC
sin(180-A)/sinCcosB=2sinA/sinC
sinA/sinCcosB=2sinA/sinC
0<A<180则sinA不会等于0
同理,sinC不等于0
约分
1/cosB=2
cosB=1/2
B=60度

代入tanB/tanC=2sinA/sinC-1
且sinA/sinC=√3-1
√3/tanC=2√3-2-1
tanC=2+√3
C=75度

A=180-B-C

所以
A=45,B=60,C=75
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式