函数的定义?

 我来答
光芒无处不在
高粉答主

2019-04-08 · 每个回答都超有意思的
知道小有建树答主
回答量:899
采纳率:97%
帮助的人:29.2万
展开全部

给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。

把这个关系式就叫函数关系式,简称函数。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。

扩展资料

函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。

1、自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。

2、因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。

3、函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。

参考资料来源:百度百科-函数

小葡萄学姐
高粉答主

推荐于2019-08-28 · 专注解答生活问题,让生活更快乐
小葡萄学姐
采纳数:447 获赞数:432691

向TA提问 私信TA
展开全部

函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。

扩展资料

“函数”由来

中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的。
中国古代“函”字与“含”字通用,都有着“包含”的意思。李善兰给出的定义是:“凡式中含天,为天之函数。”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量。这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数。”所以“函数”是指公式里含有变量的意思。我们所说的方程的确切定义是指含有未知数的等式。但是方程一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联立一次方程,即所说的线性方程组

参考资料函数(数学函数)_百度百科 

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
吐血也要抽烟
推荐于2019-08-23 · TA获得超过2.6万个赞
知道小有建树答主
回答量:111
采纳率:0%
帮助的人:5.6万
展开全部

函数的定义:

给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。

我们把这个关系式就叫函数关系式,简称函数。函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

传统定义

一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称x是自变量,y是x的函数。x的取值范围叫做这个函数的定义域,相应y的取值范围叫做函数的值域 

近代定义

设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数  和它对应,那么就称映射  为从集合A到集合B的一个函数,记作  或  。

其中x叫作自变量,  叫做x的函数,集合  叫做函数的定义域,与x对应的y叫做函数值,函数值的集合  叫做函数的值域,  叫做对应法则。其中,定义域、值域和对应法则被称为函数三要素定义域,值域,对应法则称为函数的三要素。

一般书写为  。若省略定义域,一般是指使函数有意义的集合  。

函数过程中的这些语句用于完成某些有意义的工作——通常是处理文本,控制输入或计算数值。通过在程序代码中引入函数名称和所需的参数,可在该程序中执行(或称调用)该函数。

类似过程,不过函数一般都有一个返回值。它们都可在自己结构里面调用自己,称为递归。

扩展资料:

函数的表示方法有以下几种:解析式法,列表法、图像法和语言描述法。

解析式法

用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。这种方法的优点是能简明、准确、清楚地表示出函数与自变量之间的数量关系;缺点是求对应值时往往要经过较复杂的运算,而且在实际问题中有的函数关系不一定能用表达式表示出来。

列表法

用列表的方法来表示两个变量之间函数关系的方法叫做列表法。这种方法的优点是通过表格中已知自变量的值,可以直接读出与之对应的函数值;缺点是只能列出部分对应值,难以反映函数的全貌。如下所示

图像法

把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。这种表示函数关系的方法叫做图象法。这种方法的优点是通过函数图象可以直观、形象地把函数关系表示出来;缺点是从图象观察得到的数量关系是近似的 。

语言叙述法

使用语言文字来描述函数的关系。

参考资料:百度百科——函数的定义

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
嘉欣30H5ej1
2018-11-13 · TA获得超过519个赞
知道答主
回答量:21
采纳率:0%
帮助的人:6373
展开全部
一、 函数的定义
函数的传统定义:
设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。
我们将自变量x取值的集合叫做函数的定义域,和自变量x对应的y的值叫做函数值,函数值的集合叫做函数的值域。
函数的近代定义:
设A,B都是非空的数的集合,f:x→y是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中x∈A,y∈B,原象集合A叫做函数f(x)的定义域,象集合C叫做函数f(x)的值域,显然有CB。
符号y=f(x)即是“y是x的函数”的数学表示,应理解为:
x是自变量,它是法则所施加的对象;f是对应法则,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y是自变量的函数,当x为允许的某一具体值时,相应的y值为与该自变量值对应的函数值,当f用解析式表示时,则解析式为函数解析式。y=f(x)仅仅是函数符号,不是表示“y等于f与x的乘积”,f(x)也不一定是解析式,在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等符号来表示。
对函数概念的理解
函数的两个定义本质是一致的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。这样,就不难得知函数实质是从非空数集A到非空数集B的一个特殊的映射。
由函数的近代定义可知,函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。y=f(x)的意义是:y等于x在法则f下的对应值,而f是“对应”得以实现的方法和途径,是联系x与y的纽带,所以是函数的核心。至于用什么字母表示自变量、因变量和对应法则,这是无关紧要的。
函数的定义域(即原象集合)是自变量x的取值范围,它是构成函数的一个不可缺少的组成部分。当函数的定义域及从定义域到值域的对应法则完全确定之后,函数的值域也就随之确定了。因此,定义域和对应法则为“y是x的函数”的两个基本条件,缺一不可。只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数,这就是说:
1)定义域不同,两个函数也就不同;
2)对应法则不同,两个函数也是不同的;
3)即使是定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则。
例如:函数y=x+1与y=2x+1,其定义域都是x∈R,值域都为y∈R。也就是说,这两个函数的定义域和值域相同,但它们的对应法则是不同的,因此不能说这两个函数是同一个函数。
定义域A,值域C以及从A到C的对应法则f,称为函数的三要素。由于值域可由定义域和对应法则唯一确定。两个函数当且仅当定义域与对应法则分别相同时,才是同一函数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
icicle_ever
推荐于2017-12-16 · TA获得超过1529个赞
知道答主
回答量:32
采纳率:0%
帮助的人:51万
展开全部
一、 函数的定义

函数的传统定义:

设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。

我们将自变量x取值的集合叫做函数的定义域,和自变量x对应的y的值叫做函数值,函数值的集合叫做函数的值域。

函数的近代定义:

设A,B都是非空的数的集合,f:x→y是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中x∈A,y∈B,原象集合A叫做函数f(x)的定义域,象集合C叫做函数f(x)的值域,显然有CB。

符号y=f(x)即是“y是x的函数”的数学表示,应理解为:

x是自变量,它是法则所施加的对象;f是对应法则,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y是自变量的函数,当x为允许的某一具体值时,相应的y值为与该自变量值对应的函数值,当f用解析式表示时,则解析式为函数解析式。y=f(x)仅仅是函数符号,不是表示“y等于f与x的乘积”,f(x)也不一定是解析式,在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等符号来表示。

对函数概念的理解

函数的两个定义本质是一致的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。这样,就不难得知函数实质是从非空数集A到非空数集B的一个特殊的映射。

由函数的近代定义可知,函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。y=f(x)的意义是:y等于x在法则f下的对应值,而f是“对应”得以实现的方法和途径,是联系x与y的纽带,所以是函数的核心。至于用什么字母表示自变量、因变量和对应法则,这是无关紧要的。

函数的定义域(即原象集合)是自变量x的取值范围,它是构成函数的一个不可缺少的组成部分。当函数的定义域及从定义域到值域的对应法则完全确定之后,函数的值域也就随之确定了。因此,定义域和对应法则为“y是x的函数”的两个基本条件,缺一不可。只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数,这就是说:

1)定义域不同,两个函数也就不同;

2)对应法则不同,两个函数也是不同的;

3)即使是定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则。

例如:函数y=x+1与y=2x+1,其定义域都是x∈R,值域都为y∈R。也就是说,这两个函数的定义域和值域相同,但它们的对应法则是不同的,因此不能说这两个函数是同一个函数。

定义域A,值域C以及从A到C的对应法则f,称为函数的三要素。由于值域可由定义域和对应法则唯一确定。两个函数当且仅当定义域与对应法则分别相同时,才是同一函数。

例如:在①y=x与 ,② 与 ,③y=x+1与 ,④y=x0与y=1,⑤y=|x|与 这五组函数中,只有⑤表示同一函数。

f(x)与f(a)的区别与联系

f(a)表示当x=a时函数f(x)的值,是一个常量。而f(x)是自变量x的函数,在一般情况下,它是一个变量,f(a)是f(x)的一个特殊值。如一次函数f(x)=3x+4,当x=8时,f(8)=3×8+4=28是一常数。

当法则所施加的对象与解析式中表述的对象不一致时,该解析式不能正确施加法则。

比如f(x)=x2+1,左端是对x施加法则,右端也是关于x的解析式,这时此式是以x为自变量的函数的解析式;而对于f(x+1)=3x2+2x+1,左端表示对x+1施加法则,右端是关于x的解析式,二者并不统一,这时此式既不是关于x的函数解析式,也不是关于x+1的函数解析式。

函数的定义域:

定义:

原象的集合A叫做函数y=f(x)的定义域,即自变量的允许值范围。

当函数用解析式给出时,定义域就是使式子有意义的自变量的允许值的集合。

求定义域:

求定义域的三种基本方法:

一是依据函数解析式中所包含的运算(除法、开平方等)对自变量的制约要求,通过解不等式(组)求得定义域;

二是依据确定函数y=f(x)的对应法则f对作用对象的取值范围的制约要求,通过解不等式(组)求得定义域;

三是根据问题的实际意义,规定自变量的取值范围,求得定义域。

如果函数是由一些基本函数通过四则运算构成的,那么它的定义域是使各个部分都有意义的x值组成的集合。对含参数的函数求定义域(或已知定义域,求字母参数的取值范围)时,必须对参数的取值进行讨论。

当函数由实际问题给出时,其定义域由实际问题确定。

函数的值域:

定义:

象的集合C(C B)叫做函数y=f(x)的值域,即函数值的变化范围。

求值域的基本方法:

依据各类基本函数的值域,通过不等式的变换,确定函数值的取值范围,在这一过程中,充分利用函数图像的直观性,能有助于结论的得出和检验。从定义域出发,利用函数的单调性,是探求函数值域的通法

参考资料: http://www.tjjy.com.cn/swin2000/gzdata/maths/Senior_Maths_V1/unit_02/lesson_02/HTML/gm1202022.htm

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(14)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式