数学分析——定积分急求~~~~被采纳的追加30 悬赏啊,速度快的可以考虑更多~~~谢谢!

设y=f(x)(x>=0)是严格单调增加的连续函数,f(0)=0,x=h(y)是它的反函数,证明:f(x)0到a的定积分+h(x)0到b的定积分>=ab(a>=0,b>=... 设y=f(x)(x>=0)是严格单调增加的连续函数,f(0)=0,x=h(y)是它的反函数,证明:
f(x)0到a的定积分+h(x)0到b的定积分>=ab(a>=0,b>=0)
展开
 我来答
522597089
2011-03-05 · TA获得超过6787个赞
知道大有可为答主
回答量:1170
采纳率:75%
帮助的人:808万
展开全部
要证∫(0,a)f(x)dx+∫(0,b)h(x)dx>=ab,(a>=0,b>=0)
只需证∫(0,a)f(x)dx+∫(0,b)h(y)dy>=ab
由已知得y=f(h(y)),x=h(f(x)),y=f(x)>=f(0)=0,h(y)>=h(0)=h(f(0))=0.于是
∫(0,a) f(x)dx+∫(0,b) h(y)dy=∫(0,a) f(x)dx+∫(0,h(b)) h(f(x))df(x)
=∫(0,a) f(x)dx+h(f(x))f(x)|(0,h(b))-∫(0,h(b)) f(x)dh(f(x))
=∫(0,a)f(x)dx+xf(x)|(0,h(b))-∫(0,h(b))f(x)dx
=h(b)f(h(b))+∫(0,a)f(x)dx)-∫(0,h(b))f(x)dx
=bh(b)+∫(0,a)f(x)dx)-∫(0,h(b))f(x)dx
i)当h(b)=a,有∫(0,a)f(x)dx+∫(0,b)h(x)dx=ab

ii)当h(b)<a,bh(b)+∫(0,a)f(x)dx)-∫(0,h(b))f(x)dx
=bh(b)+∫(h(b),a) f(x)dx>bh(b)+f(h(b))[a-h(b)]=bh(b)+b[a-h(b)]=ab

iii)当h(b)>a,bh(b)+∫(0,a)f(x)dx)-∫(0,h(b))f(x)dx=bh(b)-∫(a,0)f(x)dx-∫(0,h(b)) f(x)dx
=bh(b)-∫(a,h(b)) f(x)dx>bh(b)-f(h(b))[h(b)-a]=bh(b)-b[h(b)-a]=ab

因此∫(0,a) f(x)dx+∫(0,b) h(x)dx>=ab,(a>=0,b>=0)命题成立。

【注:紧跟积分符号后面的为积分区间】
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式