2个回答
展开全部
= 2*(1-1/(1+1)^2)*(1-1/(2+1)^2)*(1-1/(3+1)^2)*......*(1-1/(n+1)^2)
= 2*(1-1/2^2)**(1-1/3^2)*(1-1/4^2)*......*(1-1/(n+1)^2)
= 2* (2^2-1)/2^2* (3^2-1)/3^2* (4^2-1)/4^2*......* ((n+1)^2-1)/(n+1)^2
= 2*(2-1)(2+1)(3-1)(3+1)(4-1)(4+1)......(n+1-1)(n+1+1) / [2*2*3*3*4*4*......*(n+1)*(n+1) ]
= 2* 1*3*2*4*3*5*4*6*....*n*(n+2) / [2*2*3*3*4*4*......*(n+1)*(n+1) ]
= (n+2) / (n+1)
= 2*(1-1/2^2)**(1-1/3^2)*(1-1/4^2)*......*(1-1/(n+1)^2)
= 2* (2^2-1)/2^2* (3^2-1)/3^2* (4^2-1)/4^2*......* ((n+1)^2-1)/(n+1)^2
= 2*(2-1)(2+1)(3-1)(3+1)(4-1)(4+1)......(n+1-1)(n+1+1) / [2*2*3*3*4*4*......*(n+1)*(n+1) ]
= 2* 1*3*2*4*3*5*4*6*....*n*(n+2) / [2*2*3*3*4*4*......*(n+1)*(n+1) ]
= (n+2) / (n+1)
追问
可以给简单过程吗
追答
写得详细是为了便于看懂,懂了之后可以去掉一些过程。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询