y*y''+1=y'^(2),求通解。。。。

522597089
2011-03-07 · TA获得超过6786个赞
知道大有可为答主
回答量:1170
采纳率:75%
帮助的人:796万
展开全部
不显含x型。
令y'=p,则y"=pdp/dy,
原微分方程可化为
yp[dp/dy]+1=p^2
即ydp/dy=(p^2-1)/p
分离变量
p/(p^2-1)dp=dy/y
两边积分
∫p/(p^2-1)dp =∫dy/y
∫1/(p^2-1)d(p^2-1) =2∫dy/y
ln(p^2-1)=2lny+lnC1
得p=±√[C1y^2+1]
即dy/dx=±√[C1y^2+1]
分离变量
dy/√[C1y^2+1]=±dx
两边积分
∫dy/√[C1y^2+1]=±∫dx
凑微
(1/√C1)∫1/√[1+C1y^2]d[(√C1)y]=±∫dx
得通解为:
(1/√C1)ln[(√C1)y+√(1+C1y^2)]=±x+C2

【其中用到了∫1/√(1+x^2)dx=ln|x+√(1+x^2)|+C】
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式