已知m/n=5/3,求分式m/(m+n)+m/(m-n)-n^2/(m^2-n^2)的值
展开全部
m/(m+n)+m/(m-n)-n^2/(m^2-n^2)
=m(m-n)/(m+n)(m-n)+m(m+n)/(m-n)(m+n)-n^2/(m^2-n^2)
=(m(m-n)+m(m+n))/(m^2-n^2)-n^2/(m^2-n^2)
=(2m^2))/(m^2-n^2)-n^2/(m^2-n^2)
=(2m^2-n^2)/(m^2-n^2)
m/n=5/3
m=5n/3带入
=(2(5n/3)^2-n^2)/((5n/3)^2-n^2)
=(2(5n/3)^2-n^2)/((5n/3)^2-n^2)
=(41n^2/9)/(16N^2/9)
=41/16
=m(m-n)/(m+n)(m-n)+m(m+n)/(m-n)(m+n)-n^2/(m^2-n^2)
=(m(m-n)+m(m+n))/(m^2-n^2)-n^2/(m^2-n^2)
=(2m^2))/(m^2-n^2)-n^2/(m^2-n^2)
=(2m^2-n^2)/(m^2-n^2)
m/n=5/3
m=5n/3带入
=(2(5n/3)^2-n^2)/((5n/3)^2-n^2)
=(2(5n/3)^2-n^2)/((5n/3)^2-n^2)
=(41n^2/9)/(16N^2/9)
=41/16
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询