∫dx/x(x2+1),帮忙解一下

522597089
2011-03-06 · TA获得超过6787个赞
知道大有可为答主
回答量:1170
采纳率:75%
帮助的人:823万
展开全部
令x=tant
则dx=sec^2tdt
于是
∫dx/[x(x^2+1)]
=∫sec^2t/[tantsec^2t]dt
=∫dt/tant
=∫(cost/sint)dt
=∫(1/sint)dsint
=ln|sint|+C
三角替换sint=x/√(1+x^2)
所以∫dx/[x(x^2+1)]=ln|x/√(1+x^2)|+C
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
华瑞RAE一级代理商
2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优... 点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式