i 为虚数单位,复数z满足|z|=1,则 |(z²-2z+2) / (z-1+i) | 的最大值为多少?

et8733
2011-03-06 · TA获得超过1.3万个赞
知道大有可为答主
回答量:1790
采纳率:100%
帮助的人:847万
展开全部
因为|z|=1,故设z=cosx+isinx,
所以|(z²-2z+2)/(z-1+i)|
=|[(z-1)^2-i^2]/(z-1+i)|
=|z-1-i|
=|(cosx-1)+i(sinx-1)|。
又(cosx-1)^2+(sinx-1)^2
=3-2(sinx+cosx)
=3-2√2*sin(x+π/4),
而-1<=sin(x+π/4)<=1,
所以3-2√2<=(cosx-1)^2+(sinx-1)^2<=3+2√2
|(cosx-1)+i(sinx-1)|<=√(3+2√2)=√2+1。
故所求最大值为:√2+1。
喜欢臭弟弟
2011-03-06 · TA获得超过169个赞
知道答主
回答量:140
采纳率:0%
帮助的人:105万
展开全部
因式分解,原式=|z-1-i|,这表示Z到i+1的距离
通过画图可知最大值是根号2加1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式