
几何证明题,数学高手请进!
如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD垂直底面ABCD,且PA=PD=2分之根号2,若E、F分别为PC、BD的种点。求证:平面PDC垂直...
如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD垂直底面ABCD,且PA=PD=2分之根号2,若E、F分别为PC、BD的种点。求证:平面PDC垂直PAD
展开
2个回答
展开全部
连结AC,则F是正方形ABCD对角线的交点,E、F分别为PC、BD的中点,则EF是△APC的中位线,EF‖AP,AP∈平面APC,∴EF‖平面APD。平面PAD与底面ABCD垂直,四边形ABNCD是正方形,CD⊥AD,CD⊥平面APD,CD∈平面PCD,∴平面PDC⊥平面PAD,证毕。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询