4个回答
2011-03-06 · 知道合伙人教育行家
关注
展开全部
y=-2sin(2x-π/3)+1
∵x ∈[-π/12,π/12]
∴2x-π/3 ∈[-π/2,-π/6]
∴-1≤sin(2x-π/3) ≤-1/2
1 ≤ -2 sin(2x-π/3) ≤ 2
2 ≤ -2 sin(2x-π/3) +1 ≤3
值域[2,3]
∵x ∈[-π/12,π/12]
∴2x-π/3 ∈[-π/2,-π/6]
∴-1≤sin(2x-π/3) ≤-1/2
1 ≤ -2 sin(2x-π/3) ≤ 2
2 ≤ -2 sin(2x-π/3) +1 ≤3
值域[2,3]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
定义域x∈[-π/12,π/12]
则 2x∈[-π/6,π/6]
则 2x-π/3∈[-π/2,-π/6]
所以 sin(2x-π/3)∈[-1.-1/2]
所以 -2sin(2x-π/3)∈[-2.-1]
所以-2sin(2x-π/3)+1∈[-1,0]
所以这个函数的值域就是[-1,0]
y=-2sin(2x-π/3)+1
∵x ∈[-π/12,π/12]
∴2x-π/3 ∈[-π/2,-π/6]
∴-1≤sin(2x-π/3) ≤-1/2
1 ≤ -2 sin(2x-π/3) ≤ 2
2 ≤ -2 sin(2x-π/3) +1 ≤3
值域[2,3]
则 2x∈[-π/6,π/6]
则 2x-π/3∈[-π/2,-π/6]
所以 sin(2x-π/3)∈[-1.-1/2]
所以 -2sin(2x-π/3)∈[-2.-1]
所以-2sin(2x-π/3)+1∈[-1,0]
所以这个函数的值域就是[-1,0]
y=-2sin(2x-π/3)+1
∵x ∈[-π/12,π/12]
∴2x-π/3 ∈[-π/2,-π/6]
∴-1≤sin(2x-π/3) ≤-1/2
1 ≤ -2 sin(2x-π/3) ≤ 2
2 ≤ -2 sin(2x-π/3) +1 ≤3
值域[2,3]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
[2,3]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询