已知椭圆x^2/4+y^2=1的左顶点为A,过A作两条互相垂直的弦AM,AN交椭圆于M,N两点,问MN是否恒过x轴上定点
已知椭圆x^2/4+y^2=1的左顶点为A,过A作两条互相垂直的弦AM,AN交椭圆于M,N两点,问MN是否恒过x轴上定点?...
已知椭圆x^2/4+y^2=1的左顶点为A,过A作两条互相垂直的弦AM,AN交椭圆于M,N两点,问MN是否恒过x轴上定点?
展开
展开全部
解:椭圆方程:x²/4+y²=1即x²+4y²=4
a²=4,a=2,点A(-2,0)
当直线AM的斜率变化时,设AM的斜率为k,则AN的斜率为-1/k
直线AM方程:y=k(x+2)
直线AN方程:y=-1/k(x+2)
将AM方程代入椭圆,整理:(4k²+1)x²+16k²x+16k²-4=0
韦达定理:x1*x2=(16k²-4)/(4k²+1)
则点M横坐标=(2-8k²)/(4k²+1),纵坐标=4k/(4k²+1)
将AN方程代入椭圆,整理:(k²+4)x²+16x+16-4k²=0
韦达定理:x1*x2=(16-4k²)/(k²+4)
点N的横坐标=(2k²-8)/(k²+4),纵坐标=-4k/(k²+4)
直线MN的斜率=[4k/(4k²+1)+4k/(k²+4)]/[(2-8k²)/(4k²+1)-(2k²-8)/(k²+4)]=5k/4(1-k²)
直线MN方程:y-4k/(4k²+1)=[5k/4(1-k²)][x-(2-8k²)/(4k²+1)]
化简:y=[5k/4(1-k²)](x+6/5)
由此,可知,过定点(-6/5,0)
a²=4,a=2,点A(-2,0)
当直线AM的斜率变化时,设AM的斜率为k,则AN的斜率为-1/k
直线AM方程:y=k(x+2)
直线AN方程:y=-1/k(x+2)
将AM方程代入椭圆,整理:(4k²+1)x²+16k²x+16k²-4=0
韦达定理:x1*x2=(16k²-4)/(4k²+1)
则点M横坐标=(2-8k²)/(4k²+1),纵坐标=4k/(4k²+1)
将AN方程代入椭圆,整理:(k²+4)x²+16x+16-4k²=0
韦达定理:x1*x2=(16-4k²)/(k²+4)
点N的横坐标=(2k²-8)/(k²+4),纵坐标=-4k/(k²+4)
直线MN的斜率=[4k/(4k²+1)+4k/(k²+4)]/[(2-8k²)/(4k²+1)-(2k²-8)/(k²+4)]=5k/4(1-k²)
直线MN方程:y-4k/(4k²+1)=[5k/4(1-k²)][x-(2-8k²)/(4k²+1)]
化简:y=[5k/4(1-k²)](x+6/5)
由此,可知,过定点(-6/5,0)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询