2个回答
展开全部
考点:平行线的性质;角平分线的定义;垂线;三角形内角和定理.
专题:探究型.
分析:先根据平行线的性质得出,∠BMN+∠MND=180°,再由角平分线的性质可得出∠1=∠2,∠3=∠4,故可知∠1+∠3=90°,由三角形的内角和是180°即可得出∠MGN=90°,进而可得出结论.
解答:解:∵AB∥CD,
∴∠BMN+∠MND=180°,
∵∠BMN与∠MND的平分线相交于点G,
∴∠1=∠2,∠3=∠4,
∴∠1+∠3=90°,
∴∠MGN=180°-(∠1+∠3)=180°-90°=90°,
∴MG⊥NG.
本题考查的是平行线的性质、角平分线的定义及三角形内角和定理,在解答此类问题时往往用到三角形的内角和是180°这一隐含条件.
专题:探究型.
分析:先根据平行线的性质得出,∠BMN+∠MND=180°,再由角平分线的性质可得出∠1=∠2,∠3=∠4,故可知∠1+∠3=90°,由三角形的内角和是180°即可得出∠MGN=90°,进而可得出结论.
解答:解:∵AB∥CD,
∴∠BMN+∠MND=180°,
∵∠BMN与∠MND的平分线相交于点G,
∴∠1=∠2,∠3=∠4,
∴∠1+∠3=90°,
∴∠MGN=180°-(∠1+∠3)=180°-90°=90°,
∴MG⊥NG.
本题考查的是平行线的性质、角平分线的定义及三角形内角和定理,在解答此类问题时往往用到三角形的内角和是180°这一隐含条件.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询