已知三角形ABC中,D为BC边上的一点,且BD/DC=BA/AC,求证:AD平分角A
展开全部
分析:用相似三角形去证明,初中水平的定理不难证明,证明如下:
证:延长BA至M使得AM=AC,连接MC,
则三角形AMC中∠ACM=∠AMC(等腰对等角)
∵ BD/DC=BA/AC 且AM=AC
∴DC / BD= AM / BA 两边同时加1
得:(DC+BD) / BD= (AM+BA) / BA
即:BC / BD = BM / BA
在三角形DBA与三角形CBM中
BC / BD = BM / BA (已经证明)
∠DBA=∠CBM(公共角)
∴三角形DBA ∽ 三角形CBM
∴∠BAD=∠BMC
∴AD平行MC
∴∠DAC=∠ACM=∠AMC=∠BAD
∴∠BAD=∠DAC
∴AD平分角BAC
证毕。
证:延长BA至M使得AM=AC,连接MC,
则三角形AMC中∠ACM=∠AMC(等腰对等角)
∵ BD/DC=BA/AC 且AM=AC
∴DC / BD= AM / BA 两边同时加1
得:(DC+BD) / BD= (AM+BA) / BA
即:BC / BD = BM / BA
在三角形DBA与三角形CBM中
BC / BD = BM / BA (已经证明)
∠DBA=∠CBM(公共角)
∴三角形DBA ∽ 三角形CBM
∴∠BAD=∠BMC
∴AD平行MC
∴∠DAC=∠ACM=∠AMC=∠BAD
∴∠BAD=∠DAC
∴AD平分角BAC
证毕。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询