
已知X1,X2为方程X²+3X+1=0的两实根,求X1³+8X2+20的值
1个回答
展开全部
X1,X2为方程X²+3X+1=0的两实根
有:X1+X2 = —3
X1*X2 = 1
X1²+1= —3X1
X1³+8X2+20 = X1³+1+8X2+19
= (X1+1)*(X12 -X1+1 )+8X2+19
= (X1+1)*(—3X1—X1) +8X2+19
= —4X12—4X1+8X2+19
= —4(—3X1-1)—4X1+8X2+19
= 12X1+4-4X1+8X2+19
= 8X1+8X2 +23
= —1
有:X1+X2 = —3
X1*X2 = 1
X1²+1= —3X1
X1³+8X2+20 = X1³+1+8X2+19
= (X1+1)*(X12 -X1+1 )+8X2+19
= (X1+1)*(—3X1—X1) +8X2+19
= —4X12—4X1+8X2+19
= —4(—3X1-1)—4X1+8X2+19
= 12X1+4-4X1+8X2+19
= 8X1+8X2 +23
= —1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询