数学中导数问题
己知f(x)=In(1+x)-x/(1+ax)(a>0)(1)若f(X)在(0,正无)为单增,求a范围2)若f(X)在X=0有极小值,求a范围...
己知f(x)=In(1+x)-x/(1+ax)(a>0) (1)若f(X)在(0,正无)为单增,求a范围2)若f(X)在X=0有极小值,求a范围
展开
2个回答
展开全部
(1)若f(x)在(0,正无)为单增,则对任何x>0,都有
f ' (x)=1/(1+x)-1/(1+ax)^2 >0
[(1+ax)^2 -(1+x)]/[(1+x)(1+ax)^2]>0
因为分母恒大于0,因此求a使分子大于0
1+2ax+(ax)^x-1-x>0
(2a-1)x+(ax)^2>0
2a-1+a^2 * x>0
a^2 * x>1-2a
x>(1-2a)/a^2
因为x>0,因此(1-2a)/a^2<=0
解得a>=1/2
(2)若f(X)在X=0有极小值,则要求f ' (0)=0 且 f '' (0)>0 或 f ' (0)=0 且 f '' (0)=0 且 f ''' (0)>0
f ' (0)=1/(1+0)-1/(1+a*0)^2 =0 恒成立
f '' (0)>0
-1/(1+0)^2+2a/(1+a*0)^2>0
2a-1>0
a>1/2
若f '' (0)=0,则a=1/2
f ''' (0)=2/(1+0)^3 - 6a^2 / (1+0)^4
=2(1-3a^2)
=1/2>0
因此a的取值范围是[1/2,正无穷)
f ' (x)=1/(1+x)-1/(1+ax)^2 >0
[(1+ax)^2 -(1+x)]/[(1+x)(1+ax)^2]>0
因为分母恒大于0,因此求a使分子大于0
1+2ax+(ax)^x-1-x>0
(2a-1)x+(ax)^2>0
2a-1+a^2 * x>0
a^2 * x>1-2a
x>(1-2a)/a^2
因为x>0,因此(1-2a)/a^2<=0
解得a>=1/2
(2)若f(X)在X=0有极小值,则要求f ' (0)=0 且 f '' (0)>0 或 f ' (0)=0 且 f '' (0)=0 且 f ''' (0)>0
f ' (0)=1/(1+0)-1/(1+a*0)^2 =0 恒成立
f '' (0)>0
-1/(1+0)^2+2a/(1+a*0)^2>0
2a-1>0
a>1/2
若f '' (0)=0,则a=1/2
f ''' (0)=2/(1+0)^3 - 6a^2 / (1+0)^4
=2(1-3a^2)
=1/2>0
因此a的取值范围是[1/2,正无穷)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询