3个回答
展开全部
解题关键:
牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。解题环节主要有四步:
1、求出每天长草量;
2、求出牧场原有草量;
3、求出每天实际消耗原有草量( 牛吃的草量-- 生长的草量= 消耗原有草量);
4、最后求出可吃天数。
例如1.牧场上有一片青草,牛每天吃草,草每天以均匀的速度生长。这片青草供给10头牛可以吃20天,供给15头牛吃,可以吃10天。供给25头牛吃,可以吃多少天?
分析:
如果草的总量一定,那么,牛的头数与吃草的天数的积应该相等。现在够10头牛吃20天,够15头牛吃10天,10×20和15×10两个积不相等,这是因为10头牛吃的时间长,长出的草多,所以,用这两个积的差,除以吃草的天数差,可求出每天的长草量。
①、求每天的长草量
( 10×20-15×10 )÷( 20-10 )= 5 ( 单位量)
说明牧场每天长出的草够5头牛吃一天的草量。
②、求牧场原有草量
因为牧场每天长出的草量够5头牛吃一天,那么,10头牛去吃,每天只有10-5=5 ( 头 )牛吃原有草量,20天吃完,原有草量应是:( 10-5 )×20=100 ( 单位量)
或:10头牛吃20天,一共吃草量是 10×20=200 ( 单位量)
一共吃的草量 - 20天共生长的草量 = 原有草量
200 - 100 = 100(单位量)
③、求25头牛吃每天实际消耗原有草量
因为牧场每天长出的草量够5头牛吃一天,25头牛去吃,(吃的 - 长的 = 消耗原草量 )
即:25 - 5= 20 ( 单位量)
④、25头牛去吃,可吃天数
牧场原有草量 ÷ 25头牛每天实际消耗原有草量 = 可吃天数
100 ÷ 20 =5 ( 天)
解: ( 10×20-15×10 )÷( 20-10 )
=50÷10
=5 (单位量) ------- 每天长草量
( 10-5 )×20
=5×20
=100 ( 单位量) ------- 原有草量
100÷ ( 25-5 )
=100÷20
=5 (天)
答:可供给25头牛吃 5 天。
牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。解题环节主要有四步:
1、求出每天长草量;
2、求出牧场原有草量;
3、求出每天实际消耗原有草量( 牛吃的草量-- 生长的草量= 消耗原有草量);
4、最后求出可吃天数。
例如1.牧场上有一片青草,牛每天吃草,草每天以均匀的速度生长。这片青草供给10头牛可以吃20天,供给15头牛吃,可以吃10天。供给25头牛吃,可以吃多少天?
分析:
如果草的总量一定,那么,牛的头数与吃草的天数的积应该相等。现在够10头牛吃20天,够15头牛吃10天,10×20和15×10两个积不相等,这是因为10头牛吃的时间长,长出的草多,所以,用这两个积的差,除以吃草的天数差,可求出每天的长草量。
①、求每天的长草量
( 10×20-15×10 )÷( 20-10 )= 5 ( 单位量)
说明牧场每天长出的草够5头牛吃一天的草量。
②、求牧场原有草量
因为牧场每天长出的草量够5头牛吃一天,那么,10头牛去吃,每天只有10-5=5 ( 头 )牛吃原有草量,20天吃完,原有草量应是:( 10-5 )×20=100 ( 单位量)
或:10头牛吃20天,一共吃草量是 10×20=200 ( 单位量)
一共吃的草量 - 20天共生长的草量 = 原有草量
200 - 100 = 100(单位量)
③、求25头牛吃每天实际消耗原有草量
因为牧场每天长出的草量够5头牛吃一天,25头牛去吃,(吃的 - 长的 = 消耗原草量 )
即:25 - 5= 20 ( 单位量)
④、25头牛去吃,可吃天数
牧场原有草量 ÷ 25头牛每天实际消耗原有草量 = 可吃天数
100 ÷ 20 =5 ( 天)
解: ( 10×20-15×10 )÷( 20-10 )
=50÷10
=5 (单位量) ------- 每天长草量
( 10-5 )×20
=5×20
=100 ( 单位量) ------- 原有草量
100÷ ( 25-5 )
=100÷20
=5 (天)
答:可供给25头牛吃 5 天。
参考资料: 参考“百度”
2011-03-09
展开全部
(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);
(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`
(3)吃的天数=原有草量÷(牛头数-草的生长速度);
(4)牛头数=原有草量÷吃的天数+草的生长速度。
(1)因为草量=原有草量+新长出的草量,而且草量是均匀增长的。
所以“对应的牛头数×吃的较多天数”就代表了第一次情况下的总草量, 即为:吃的较多天数时的总草量=草地原有草量+草的生长速度*较多天数时的时间。
同理“相应的牛头数×吃的较少天数”代表了第二次情况下的总草量,即为:吃的较少天数时的总草量=草地原有草量+草的生长速度*较少天数时的时间。
两个一做差,式子中的“原有草量”就被减掉了,等号的左边就是两次情况之下总草量的差,右边等于草的生长速度*两次情况下的时间差,所以直接把时间差除到左边去,就得到了草的生长速度了。
(2)牛吃的草的总量包括两个方面,一是原来草地上的草,而是新增长出来的草。所以“牛头数×吃的天数”表示的就是牛一共吃了多少草,牛在这段时间把草吃干净了,所以牛一共吃了多少草就也表示草的总量。当然草的总量减去新增长出来的草的数量,就剩下原来草地上面草的数量了。
(3)(4)这个公式可以由(2)变形就能得到了,意思和(2)是相同的
(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`
(3)吃的天数=原有草量÷(牛头数-草的生长速度);
(4)牛头数=原有草量÷吃的天数+草的生长速度。
(1)因为草量=原有草量+新长出的草量,而且草量是均匀增长的。
所以“对应的牛头数×吃的较多天数”就代表了第一次情况下的总草量, 即为:吃的较多天数时的总草量=草地原有草量+草的生长速度*较多天数时的时间。
同理“相应的牛头数×吃的较少天数”代表了第二次情况下的总草量,即为:吃的较少天数时的总草量=草地原有草量+草的生长速度*较少天数时的时间。
两个一做差,式子中的“原有草量”就被减掉了,等号的左边就是两次情况之下总草量的差,右边等于草的生长速度*两次情况下的时间差,所以直接把时间差除到左边去,就得到了草的生长速度了。
(2)牛吃的草的总量包括两个方面,一是原来草地上的草,而是新增长出来的草。所以“牛头数×吃的天数”表示的就是牛一共吃了多少草,牛在这段时间把草吃干净了,所以牛一共吃了多少草就也表示草的总量。当然草的总量减去新增长出来的草的数量,就剩下原来草地上面草的数量了。
(3)(4)这个公式可以由(2)变形就能得到了,意思和(2)是相同的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
r1e
参考资料: dq
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询