
双曲线的x^2/9-y^2/16=1两个焦点F1F2,点P在双曲线上,若∠F1PF2为钝角则点P横坐标的取值范围是
1个回答
展开全部
x^2/9-y^2/16=1
a=3,b=4,c^2=a^2+b^2=25 c=5
F1(0,5) F2(0,-5)
x^2+y^2=25
x^2/9-y^2/16=1
16x^2-9y^2=144
16x^2-9(25-x^2)=144
25x^2=144+225
25x^2=369
x=± √369/5
点P横坐标的取值范围是
-√369/5< x<√369/5
a=3,b=4,c^2=a^2+b^2=25 c=5
F1(0,5) F2(0,-5)
x^2+y^2=25
x^2/9-y^2/16=1
16x^2-9y^2=144
16x^2-9(25-x^2)=144
25x^2=144+225
25x^2=369
x=± √369/5
点P横坐标的取值范围是
-√369/5< x<√369/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询