(1-sin^6θ-cos^6θ)/(1-sin^4θ-cos^4θ)
1个回答
展开全部
1-sin^6θ-cos^6θ
=1-[(sin^2θ)^3+(cos^2θ)^3]
=1-(sin^2θ+cos^2θ)(sin^4θ-sin^2θcos^2θ+cos^4θ)
=1-(sin^4θ-sin^2θcos^2θ+cos^4θ)
=1-(sin^4θ+2sin^2θcos^2θ+cos^4θ-3sin^2θcos^2θ)
=1-[(sin^2θ+cos^2θ)^2-3sin^2θcos^2θ]
=3sin^2θcos^2θ
1-sin^4θ-cos^4θ
=1-(sin^4θ+cos^4θ)
=1-[(sin^4θ+2sin^2θcos^2θ+cos^4θ-2sin^2θcos^2θ)]
=1-[(sin^2θ+cos^2θ)^2-2sin^2θcos^2θ]
=2sin^2θcos^2θ
所以:(1-sin^6θ-cos^6θ)/(1-sin^4θ-cos^4θ)
=(3sin^2θcos^2θ)/(2sin^2θcos^2θ)
=3/2。
=1-[(sin^2θ)^3+(cos^2θ)^3]
=1-(sin^2θ+cos^2θ)(sin^4θ-sin^2θcos^2θ+cos^4θ)
=1-(sin^4θ-sin^2θcos^2θ+cos^4θ)
=1-(sin^4θ+2sin^2θcos^2θ+cos^4θ-3sin^2θcos^2θ)
=1-[(sin^2θ+cos^2θ)^2-3sin^2θcos^2θ]
=3sin^2θcos^2θ
1-sin^4θ-cos^4θ
=1-(sin^4θ+cos^4θ)
=1-[(sin^4θ+2sin^2θcos^2θ+cos^4θ-2sin^2θcos^2θ)]
=1-[(sin^2θ+cos^2θ)^2-2sin^2θcos^2θ]
=2sin^2θcos^2θ
所以:(1-sin^6θ-cos^6θ)/(1-sin^4θ-cos^4θ)
=(3sin^2θcos^2θ)/(2sin^2θcos^2θ)
=3/2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询