设数列{An}是公差不为零的等差数列,Sn是数列的前n项和,且S3^2=9S2,S4=4S2,则数列{An}的通项公式是?

再帮算一下,谢谢了... 再帮算一下,谢谢了 展开
百度网友9e1ac5c54
2011-03-09 · TA获得超过1.6万个赞
知道大有可为答主
回答量:4662
采纳率:0%
帮助的人:1.1亿
展开全部
(a1 + a2 + a3)^2 = 9 (a1 + a2)
(a1 + a2 + a3 + a4) = 4(a1 + a2)

设 公差为d, 则
(a2 - d + a2 + a2 + d)^2 = 9(a2 - d + a2)
(a2 -d + a2 + a2+d + a2 + 2d) = 4(a2 - d + a2)

9a2^2 = 9 (2a2 - d)
4a2 + 2d = 4(2a2 -d)

a2^2 = 2a2 -d
2a2 = 3d

a^2 = 2a2 - 2a2 /3
a^2 = 4a2 /3
a2 = 0 或 4/3

a2 = 0 时, d = 0, 整个数列为0数列, 舍去
a2 = 4/3时, d = 8/9

a1 = a2 - d = 4/9

an = a1 + (n-1)d = 4/9 + 8(n-1)/9 = 4(2n-1)/9

------------------
附录 检验:
a1 = 4/9
a2 = 12/9
a3 = 20/9
a4 = 28/9

S2 = 16/9
S4 = 64/9
S4 = 4S2 成立

S3 = 36/9 = 4
S3^2 = 16
9S2 = 16
S3^2 = 9S2 成立
士妙婧RF
2011-03-09 · TA获得超过7.8万个赞
知道大有可为答主
回答量:1.5万
采纳率:42%
帮助的人:8181万
展开全部
设公差为d,
则S2=a1+a2=2a1+d
S3=a1+a2+a3=3a1+3d
S4=a1+a2+a3+a4=4a1+6d
S3^2=9S2,则(3a1+3d)²=9(2a1+d),即(a1+d)²=2a1+d
S4=4S2,则4a1+6d=8a1+4d,则2a1=d代入上式,得
(a1+2a1)²=2a1+2a1
9a1²=4a1
所以a1=0或a1=4/9
a1=0时d=0,又数列{An}是公差不为零的等差数列,故a1=0舍去。
a1=4/9,则d=8/9
数列{An}的通项公式an=a1+(n-1)d=4/9+(n-1)*8/9=(8n-4)/9
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
2397288
2011-03-10 · TA获得超过345个赞
知道答主
回答量:94
采纳率:0%
帮助的人:69.8万
展开全部
设首项为A1公差为d
S2=2A1+d;S3=3A1+3d;S4=4A1+6d
即(3A1+3d)^2=9(2A1+d),4A1+6d=4(2A1+d)
解得,A1=4/9,d=8/9
An=A1+(n-1)d=4/9+8(n-1)/9=(8n-4)/9
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
聖鳥蒼鹭
2011-03-09 · TA获得超过5612个赞
知道大有可为答主
回答量:886
采纳率:0%
帮助的人:544万
展开全部
d=a4-a3=(s4-s3)-(s3-s2)=s4+s2=5s2=5(a1+a2)=10a1+5d
(s3)^2=(3a1+3d)^2=9*(2a1+d)
(a1+d)^2=2a1+d
a1^2+d^2+2a1d-2a1-d=0
a1=4/9, d=8/9
然后 通项公式就不用写了吧~~~^_^ 不懂再问呀~~~
追问
d=a4-a3=(s4-s3)-(s3-s2)=s4+s2=5s2=5(a1+a2)=10a1+5d       a4-a3=(S4-S3)-(S3-S2)为什么?问题中没有问到A4和A3啊?
追答
问题中的确是没有 a4和a3只是解答过程里一个承上启下的东西而已
为了把公差d 和 S4 S3 S2联系起来 就能利用题目中的条件
来自:求助得到的回答
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
izqzy
2011-03-09
知道答主
回答量:6
采纳率:0%
帮助的人:8458
展开全部
由第二式两边减S2得:
a3+a4=3(a1+a2),
即2a1+5d=6a1+3d,
即d=2a1。
代入第一式得:
(a1+3a1+5a1)^2=9(a1+3a1)
即81a1^2=36a1
得a1=0(舍),a1=4/9,d=8/9
所以An=8/9n-4/9

我用手机打的,望采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式