
先化简,再求值:a^2+a-b^+b分之a^2-a-b^2-b,其中a=4分之3,b=4分之1
1个回答
展开全部
解:a^2-a-b^2-b/a^2+a-b^2+b
=(a^2-b2-a-b)/(a^2-b^2+a+b)
=[(a+b)(a-b)-(a+b)]/[(a+b)(a-b)+(a+b)]
=[(a+b)(a-b-1)]/[(a+b)(a-b+1)]
=(a-b-1)/(a-b+1)
∵a=3/4 b=1/4
∴(a-b-1)/(a-b+1)= (2/4-1)/(2/4+1)=(-1/2)/(2/3)=-1/3
=(a^2-b2-a-b)/(a^2-b^2+a+b)
=[(a+b)(a-b)-(a+b)]/[(a+b)(a-b)+(a+b)]
=[(a+b)(a-b-1)]/[(a+b)(a-b+1)]
=(a-b-1)/(a-b+1)
∵a=3/4 b=1/4
∴(a-b-1)/(a-b+1)= (2/4-1)/(2/4+1)=(-1/2)/(2/3)=-1/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询